首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Composites Part B》2013,45(1):304-312
The main objective of this experimental study was to investigate the effects of seawater and impact loading on the fatigue life of glass–epoxy composite pipes under cyclic internal pressure. The pipes were produced by filament winding technique. Composite specimens were immersed in seawater for periods of 3, 6, and 9 months. After the impact tests are carried out at three different energy levels (5, 7.5, and 10 J), fatigue tests were conducted on the specimens. It is seen from results that fatigue life changes according to both impact energy and seawater immersion time. Fatigue life of non-impacted specimen is greater than the impacted one. Fatigue life increases in the impacted specimens up to 3 months and reaches generally maximum value. After that it decreases with increase in seawater immersion time. During the fatigue tests, fatigue damage types named perspiration, leakage, and eruption were observed.  相似文献   

2.
3.
The progressive damage behaviors of hybrid woven composite panels (101.6 mm × 101.6 mm) impacted by drop-weights at four different velocities were studied by a combined experimental and 3-D dynamic nonlinear finite element approach. The specimens tested were made of plain-weave hybrid S2 glass-IM7 graphite fibers/toughened epoxy (cured at 177 °C). The composite panels were damaged using a pressure-assisted Instron-Dynatup 8520 instrumented drop-weight impact tester. During these low-velocity simpact tests, the time-histories of impact-induced dynamic strains and impact forces were recorded. The damaged specimens were inspected visually and using ultrasonic C-Scan methods. The commercially available 3-D dynamic nonlinear finite element (FE) software, LS-DYNA, incorporated with a proposed user-defined damage-induced nonlinear orthotropic model, was then used to simulate the experimental results of drop-weight tests. Good agreement between experimental and FE results has been achieved when comparing dynamic force, strain histories and damage patterns from experimental measurements and FE simulations.  相似文献   

4.
This paper aims at investigating the hybridisation effect on the diffusion kinetic and the tensile mechanical behaviour of flax–glass fibres reinforced epoxy composites. For this purpose, hybrid composites composed of flax and glass fibre laminates with different stacking sequences were consolidated by compression moulding and subjected to environment ageing. The obtained results show that the water uptake and the diffusion coefficient are clearly reduced by the addition of glass fibre layers in flax laminate. The ageing conditions performed show that the flax–glass hybridisation presents a positive effect in a wet environment at low temperatures (∼20 °C) in the Young’s modulus and the tensile strength. For example, the Young’s modulus fell by 50% and 41% for hybrid laminates with 6% and 11% of glass fibres, and by 67% for the Flax laminate. However, the flax–glass hybridisation was not necessarily a relevant choice when the hybrid laminates were exposed in a wet environment at high temperatures. Indeed, at 55 °C, this hybridisation had a negative effect on the tensile strength and on the specific tensile strength.  相似文献   

5.
Bamboo fiber reinforced epoxy matrix composites filled with different weight proportions of red mud (a solid waste generated in alumina plants) are fabricated. The mechanical properties of these composites are evaluated and are then compared with those of a similar set of glass–epoxy composites. The solid particle erosion characteristics of the bamboo–epoxy composites have been studied and the experimental results are compared with those for glass–epoxy composites under similar test conditions available in the published literature. For this, an air jet type erosion test rig and Taguchi orthogonal arrays have been used. The methodology based on Taguchi’s experimental design approach is employed to make a parametric analysis of erosion wear process. This systematic experimentation has led to determination of significant process parameters and material variables that predominantly influence the wear rate of the particulate filled composites reinforced with bamboo and glass fiber, respectively. The comparative study indicates that although the bamboo based composites exhibit relatively inferior mechanical properties, their erosion wear performance is better than that of the glass fiber reinforced composites. It further indicates that the incorporation of red mud particulates results in improvement of erosion wear resistance of both the bamboo and glass fiber composites.  相似文献   

6.
An organomodified surface nanoclay reinforced epoxy glass-fiber composite is evaluated for properties of mechanical strength, stiffness, ductility and fatigue life, and compared with the pristine or epoxy glass-fiber composite material not reinforced with nanoclays. The results from monotonic tensile tests of the nanoclay reinforced composite material at 60 °C in air showed an average 11.7% improvement in the ultimate tensile strength, 10.6% improvement in tensile modulus, and 10.5% improvement in tensile ductility vs. these mechanical properties obtained for the pristine material. From tension–tension fatigue tests at a stress-ratio = +0.9 and at 60 °C in air, the nanoclay reinforced composite had a 7.9% greater fatigue strength and a fatigue life over a decade longer or 1000% greater than the pristine composite when extrapolated to 109 cycles or a simulated 10-year cyclic life. Electron microscopy and Raman spectroscopy of the fracture and failure modes of the test specimens were used to support the results and conclusions. This nanocomposite could be used as a new and improved material for repair or rehabilitation of external surface wall corrosion or physical damage on piping and vessels found in petrochemical process plants and facilities to extend their operational life.  相似文献   

7.
《Composites Part B》2001,32(7):565-574
Impact behaviour and post impact compressive characteristics of glass–carbon/epoxy hybrid composites with alternate stacking sequences have been investigated. Plain weave E-glass and twill weave T-300 carbon have been used as reinforcing materials. For comparison, laminates containing only-carbon and only-glass reinforcements have also been studied. Experimental studies have been carried out on instrumented drop weight impact test apparatus. Post impact compressive strength has been obtained using NASA 1142 test fixture. It is observed that hybrid composites are less notch sensitive compared to only-carbon or only-glass composites. Further, carbon-outside/glass-inside clustered hybrid configuration gives lower notch sensitivity compared to the other hybrid configurations.  相似文献   

8.
The aim of this study was to determine the thickness of the unpolymerized surface layer of autopolymerizing polymethylmethacrylate (PMMA) and PMMA–glass fibre (GF) composite. Powder-to-liquid (P/L) ratios of 10 : 8, 10 : 9 and 10 : 10 by weight of the commercial PMMA was tested and the E-glass fibre weave was used as filler in the PMMA–GF composite. The resin was polymerized between two glass plates at 55°C in air under an air pressure of 300 kPa. Five samples were polymerized for each test group. The inhibition depth was measured by a light microscopic technique with polarized light. The inhibition depth was affected by the P/L ratio of the PMMA: the mean inhibition depth of the unfilled PMMA with the P/L ratio of 10 : 10 was 248.6 m, while it was 175.4 m in PMMA with the P/L ratio of 10 : 8 (p=0.044). The inhibition depths were higher in the PMMA–GF composite than in the plain PMMA, which was explained by an inadequate impregnation of the GF weave with the PMMA resin. The results suggest that improper impregnation of the fibre product with autopolymerizing PMMA resin can cause oxygen inhibition of the polymerization reaction which should be taken into account when fibre products are clinically used.  相似文献   

9.
In situ Mg phase reinforced Mg70Cu17Dy13 bulk metallic glass (BMG) matrix composite with diameter of 3 mm was fabricated by conventional Cu-mold casting method. The results show that the Mg-based BMG matrix composite exhibits some work hardening except for initial elastic deformation, a high fracture compressive strength of 702 MPa, which is 1.125 times higher than single-phase Mg60Cu27Dy13 BMG and some plastic strain of 0.81%. The improvement of the mechanical properties is attributed to the fact that the Mg phase distributed in the amorphous matrix of the alloy has some effective load bearing and plastic deformation ability to restrict the expanding of shear bands and cracks and produce its own plastic deformation, which was proved by the shear deforming and fracturing mode and the fracture surfaces characterized by the vein pattern, severe remelting, and the very rough and bumpy region of the alloy.  相似文献   

10.
In the present work key parameters of different epoxy systems (such as viscosity and gel time) were evaluated to be used as healing agents when were included in a cement matrix. Epoxy systems were encapsulated in hollow glass tubes and were introduced in a mortar matrix. Samples were preloaded under three point bending in order to create a crack and release the healing system. After that, they were loaded to measure the residual strength and estimate the healing efficiency. The influence of temperature and the volume of the glass tubes were examined. Regarding the healing efficiency, a higher temperature led to an improvement of autogenous healing of the mortar matrix and a higher degree of crosslinking of the healing agent. For the studied systems, the use of glass tubes with smaller diameter containing the healing system seemed to be better in order to maintain the mechanical properties of the mortar-based composite.  相似文献   

11.
Multiscale fillers were fabricated through synthesis of carbon nanotubes (CNTs) on silica microparticles by the use of chemical vapor deposition. Three types of catalyst precursors with different concentrations and reaction times were investigated to find the optimal conditions for CNT synthesis. The produced multiscale fillers of CNT–silica were incorporated within epoxy resin to fabricate a multiscale composite. Rheological analysis and tensile and impact tests were performed to study the effect of fillers on the structural properties of composites. The rheological results demonstrated a similar viscous behavior between CNT–silica suspensions and epoxy, which implies that there was no critical increase of viscosity. Significant improvements in the elastic modulus and tensile and impact strength were achieved for epoxy matrix filled with the optimal fraction of multiscale fillers. The reinforcing efficiency of multiscale fillers was evaluated by comparing the results of micromechanical models with experimental data.  相似文献   

12.
Coatings, which were made from pure epoxy and SiO2 nanoparticle modified epoxy composite, respectively, were applied onto the basalt fiber rovings. The SiO2 nanoparticles were synthesized using a sol–gel method and modified using coupling agent. Fourier transform infrared spectroscopy (FT-IR) and Differential Scanning Calorimetry (DSC) analyses indicated the formation of modified SiO2 nanoparticles. The SiO2 nanoparticle–epoxy composite coating gave rise to a significant increase in the tensile strength of the basalt fibers as compared with the pure epoxy coating, and also the coating endowed the basalt fiber with a promising interfacial property in the basalt fiber reinforced resin matrix composite. The coating modification was an effective way in improving the mechanical properties of basalt fibers and the properties of basalt fiber/epoxy resin composites.  相似文献   

13.
14.
This paper presents results of experimental and numerical investigations on the structural behaviour of composite beams made of annealed glass panes and glass fibre reinforced polymer (GFRP) pultruded profiles. The main goal of the transparent structural solutions presented here is to increase the post-cracking residual strength and ductility of glass by using GFRP strengthening laminates. The experimental programme included (i) tensile tests on double lap joints between glass and GFRP pultruded laminates, bonded with different types of structural adhesives, and (ii) full-scale flexural tests on glass beams and glass–GFRP composite beams, with different strengthening geometries and structural adhesives. Results obtained in this study show that, unlike glass beams, in glass–GFRP composite beams it is possible to obtain relatively ductile failure modes, with a significant increase of both strength and deformation capacity after the initial cracking of glass. The stiffness of the structural adhesive used, together with the geometry of the GFRP strengthening element, have a major influence on the structural response of the composite beams. Finite element models were developed for all tested beams, allowing to simulate their serviceability behaviour (prior to glass cracking) with fairly good accuracy, namely in what concerns the degree of shear interaction at the bonded interfaces.  相似文献   

15.
The crystallization behavior and thermal stability of Al86Mm4Ni10–x Fe x alloys were investigated as a function of Fe content. Alloys, produced by a single roll melt-spinner at a circumferential speed of 52 m/s, revealed fully amorphous structures. The thermal stability of the present amorphous alloys increased with the increase of Fe content. The activation energy for crystallization of -Al increased as the Fe content increased. This increase of activation energy resulted in the simultaneous precipitation of -Al and intermetallic phase observed especially in Al86Mm4Ni5Fe5 and Al86Mm4Ni2Fe8 alloys. The glass transition was observed in DSC thermogram only after proper annealing treatment. The effect of alloy composition on the thermal stability could be explained in terms of the atomic structure of the amorphous alloy.  相似文献   

16.
The paper evaluates effect of fibre surface modification and hybridization on dynamic mechanical properties of Roystonea regia/epoxy composites. Surface modification involved alkali and silane treatments. Alkali treatment proved to be more effective on dynamic mechanical properties as compared to silane treatment. Storage and loss modulus values increased after treatments with simultaneous decrease in tan δ values. Roystonea regia and glass fibres were used together with varying proportions as reinforcement in epoxy matrix to study the hybridization effect on dynamic mechanical properties. Storage and loss modulus values increased with increase in glass fibre content whereas tan δ values were found to decrease. Scanning electron microscopy of tensile fractured surfaces was carried out to study the interface adhesion of different composites.  相似文献   

17.
《Composites Part A》2002,33(3):361-368
It is well known that composite laminates are easily damaged by low velocity impact. This event causes internal delaminations that can drastically reduce the compressive strength of laminates. In this study, numerical and experimental analyses for predicting the damage in carbon–epoxy laminates, subjected to low velocity impact, were performed. Two different laminates (04,904)s and (02,±452,902)s were tested using a drop weight testing machine. Damage characterisation was carried out using X-rays radiography and the deply technique. The developed numerical model is based on a special shell finite element that guarantees interlaminar shear stresses continuity between different oriented layers, which was considered fundamental to predict delaminations. In order to predict the occurrence of matrix failure and the delaminated areas, a new failure criterion based on experimental observations and on other developed criteria, is included. A good agreement between experimental and numerical analysis for shape and orientation of delaminations was obtained. For delaminated areas, reasonable agreement was obtained.  相似文献   

18.
Volatile release during cure is a potential cause of void formation during the resin transfer molding of complex thermosetting resins. In this study, a blended benzoxazine–epoxy resin system is analyzed to determine the rate at which volatiles are evolved, as well as the dependence of that rate on process parameters. The evolution of thermophysical and thermochemical resin properties is characterized using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The identity and rate of evolution of the gaseous byproducts released during cure are determined at ambient pressure using a Fourier transform infrared spectrometer (FTIR) linked to a reaction cell. The results show that gas release during cure can be reduced but not eliminated by degassing at elevated temperature. Furthermore, the results indicate that the nature and rate of volatile release can be modified by judicious selection of cure cycle, as shown by a preliminary analysis of manufactured neat resin panels.  相似文献   

19.
Microstructures evolution of Mg–7Gd–3Y–0.4Zr (wt.%) alloy during aging at 200 °C was investigated by using optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the alloy could exhibit remarkable age-hardening response by optimum solid solution and aging conditions. Especially, the highest Vickers hardness (HV) of this alloy was obtained when it was aged at 200 °C for 120 h, which was mainly attributed to a dense distribution of β′ precipitation in the matrix.  相似文献   

20.
Cu–Si3N4 composite coatings were prepared by electrolysis from a copper sulphate solution containing dispersed Si3N4 particles of 0.4 or 1 μm mean size. Wear behavior of Cu–Si3N4 composite and pure copper coatings were evaluated using a pin-on-disc test machine under dry condition sliding. Effects of current density and particle concentration on the incorporation percentage of Si3N4, the preferred orientation of copper crystallites, the microstructure, the microhardness and the wear resistance of the coatings were determined. Si3N4 particles in the copper matrix resulted in the production of composite deposits with smaller grain sizes and led to change the preferred orientation growth from [1 0 0] to [1 1 0]. It was proved that the presence of Si3N4 particles decreases the wear loss and the friction coefficient of the coating. According to the results, the friction coefficient decreased dramatically from 0.52 to 0.26 for pure copper coatings to 0.16–0.24 for Cu–Si3N4 composite coatings. In addition, fluctuation of friction coefficient values for Cu–Si3N4 composite coating was lower compared with the pure copper coating. The wear properties of Cu–Si3N4 composite coatings were shown to depend on the weight fraction, the size and the distribution of co-deposited particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号