首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The interlaminar shear behavior of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites was studied with short beam shear bending test. Random glass fiber (R)/epoxy means chopped fiber composite having short discontinuous fiber randomly dispersed in epoxy matrix. The effect of stacking sequence and unidirectional glass fiber relative volume fraction (VfU/VfT) on the interlaminar shear strength (ILSS) of the manufactured composites has been investigated experimentally and theoretically. The laminates were fabricated by hand lay-up technique with 5 plies. Two non-hybrid composite laminates [R]5 and [U]5 were fabricated using the same fabrication technique for the comparison purpose. The average thickness of the manufactured laminates is 5.5 ± 0.2 mm and the total fiber volume fraction (VfT) is 37%. Failure modes of all specimens were investigated. Experimental results indicated that the ILSS of [U]5 is higher than those of hybrid and [R]5 composite. Hybrid composites have higher ILSS than that of random composites. The stacking sequence and (VfU/VfT) ratio have a detectable effect on ILSS of the investigated composites.  相似文献   

2.
The main objective of the present paper is to study the tensile and bending behaviors of unidirectional glass fiber (U)/random glass fiber (R)/epoxy hybrid composites with total fiber volume fraction (VfT) = 37%. Six kinds of laminated composites of average thickness 5.5 mm were manufactured using hand lay-up technique; i.e. [R]5, [U/R/U/R/U], [U/0.5R/U]S, [0.5R/U/U]S, [U/U/0.5R]S, and [U]5. In bending test, notched and unnotched specimens were tested. For this purpose different circular notch sizes (D = 3, 6, 9 mm) were drilled at the specimen center. Tensile strength, tensile modulus, Poisson’s ratio, bending strength and bending modulus were determined experimentally. The effect of stacking sequences, random fiber relative volume fraction (VfR/VfT), and notch diameter on the mechanical properties of the mentioned composite types were studied. Failure modes of all specimens were investigated.  相似文献   

3.
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component.  相似文献   

4.
The combination of glass and ramie fibers with a polyester matrix can produce a hybrid material that is competitive to all glass composites (e.g. those used in the automobile industry). In this work, glass and ramie fibers cut to 45 mm in length were used to produce hybrid polymer composites by resin transfer molding (RTM), aiming to evaluate their physical, mechanical and dynamic mechanical properties as a function of the relative glass–ramie volume fractions and the overall fiber content (10, 21 and 31 vol.%). Higher fiber content and higher ramie fiber fraction in the hybrid composites yielded lower weight composites, but higher water absorption in the composite. The mechanical properties (impact and interlaminar shear strength) of the composites were improved by using higher fiber content, and the composite with 31 vol.% of reinforcement yielded the lowest value for the reinforcement effectiveness coefficient C, as expected. Although the mechanical properties were improved for higher fiber content, the glass transition temperature did not vary significantly. Additionally, as found by analyzing the adhesion factor A, improved adhesion tended to occur for the composites with lower fiber content (10%) and higher ramie fiber fraction (0:100) and the results for the adhesion factor A did not correspond to those found by the analysis of the tan delta peak height.  相似文献   

5.
A study on the flexural behaviour of hybrid composites reinforced by S-2 glass and T700S carbon fibres in an intra-ply configuration is presented in this paper. The three point bend test in accordance with ASTM D790-07 at various span-to-depth ratios was simulated using finite element analysis (FEA). For the purpose of validation, specimens of selected stacking configurations were manufactured following the hand lay-up process and tested in a three point bend configuration. The validated FEA model was used to study the effects of fibre volume fractions, hybrid ratio and span-to-depth ratio. It is shown that flexural modulus increases when the span-to-depth ratio increases from 16 to 32 but is approximately constant as the span-to-depth ratio further increases. A simple mathematical formula was developed for calculating the flexural modulus of hybrid composites, given the moduli of full carbon and full glass composites, and the hybrid ratio. Flexural strength increases with span-to-depth ratio. Utilisation of hybridisation can improve the flexural strength. A general rule is in order to improve flexural strength, the fibre volume fraction of glass/epoxy plies needs to be higher than that of carbon/epoxy plies. The overall maximum hybrid effect is achieved when the hybrid ratio is 0.125 ([0G/07C]) when both Vfc and Vfg are 50%. The strength increases are 43.46% and 85.57% when compared with those of the full carbon and glass configurations respectively. The optimisation shows that the maximum hybrid effect is 56.1% when Vfc = 47.48% and Vfg = 63.29%.  相似文献   

6.
In this article, a flax fiber yarn was grafted with nanometer sized TiO2, and the effects on the tensile and bonding properties of the single fibers and unidirectional fiber reinforced epoxy plates were studied. The flax fiber yarn was grafted with nanometer sized TiO2 through immersion in nano-TiO2/KH560 suspensions under sonification. The measured grafting content of the nano-TiO2 ranged from 0.89 wt.% to 7.14 wt.%, dependent on the suspension concentration. With the optimized nano-TiO2 grafting content (∼2.34 wt.%), the tensile strength of the flax fibers and the interfacial shear strength to an epoxy resin were enhanced by 23.1% and 40.5%, respectively. The formation of Si–O–Ti and C–O–Si bonds and the presence of the nano-TiO2 particles on the fiber surfaces contributed to the property enhancements. Unidirectional flax fiber reinforced epoxy composite (Vf = 35.4%) plates prepared manually showed significantly enhanced flexural properties with the grafting of nano-TiO2.  相似文献   

7.
A novel ultra-bandwidth polarization splitter based on soft glass dual-core photonic crystal fiber (DC-PCF) is designed in this paper, which is analyzed through the finite element method (FEM). The coupling characteristics of the designed DC-PCF can be enhanced by a high refractive index As2S3 core. Numerical results show the ultra-bandwidths of the x- and y-polarization modes can reach to 86 nm and 60 nm as the extinction ratios better than −20 dB and −30 dB at the vicinity of the wavelength of 1.31 μm. The length of the designed soft glass DC-PCF is 52.29 mm and the extinction ratios of the x- and y-polarization modes are −85.57 dB and −56.81 dB at the wavelength of 1.31 μm, respectively. In addition, the designed splitter has a tolerance of ±10 nm in its all structure parameters, which make the design not sensitive to the perturbation during the fabrication process.  相似文献   

8.
By multi-stage rod-in-tube fiber drawing process, a single-mode fluorotellurite glass fiber was fabricated and reported for the first time. Benefiting from chemical–physical dehydration process to remove water and OH groups, the propagation loss was decreased to 1.9 dB/m at 1550 nm and the infrared window is extended from 2.8 μm to 4.2 μm, i.e. a new kind of mid-infrared glass fiber. The fiber is with a small core of 3.52 μm in diameter to meet single-mode condition, and the effective nonlinear parameter γ was estimated to be 236.7 W−1 km−1 at 1550 nm by using continuous-wave self-phase modulation method. © 2015 Elsevier B.V. All rights reserved.  相似文献   

9.
Continuous glass fiber (GF) reinforced anionic polyamide-6 (APA6) composites were prepared via in situ ring-opening polymerization of caprolactam monomers. The effects of catalyst content, polymerization temperature and time on the viscosity average molar mass (Mv) and degree of crystallinity (Xc) were investigated in detail. The final mechanical properties of GF/APA6 composites were also studied. The results indicated that both high molecular weight and the high degree of crystallinity of resin matrix lead to the high mechanical properties of composites. Furthermore, the mechanical test results showed that the composites of plain woven fabric had tensile strength of 434 MPa and flexural strength of 407 MPa. The morphologies of tensile fracture surfaces of the composites specimens were observed through Scanning Electron Microscope (SEM). The SEM analysis showed that many disorganized nano-fiber crystals appear in the tensile fracture surfaces, which improve the mechanical properties of the matrix resin. The mechanical properties of the composites with different post-heat treatments were further investigated. The mechanical properties of the composites are significantly reduced after quenching treatment, but hardly improved after annealing.  相似文献   

10.
Mechanical performances of polymerized cyclic butylene terephthalate (pCBT) matrix, glass fiber reinforced pCBT (GF/pCBT), and nano-silica modified glass fiber/pCBT composites (nano-GF/pCBT) in hygrothermal condition were investigated. All the materials were aged in hygrothermal environments for up to three months, and then their mechanical strength degeneration ratio (SDR) was calculated. To study the aging effect of temperature, specimens with and without nano-silica modification were tested in temperatures ranging from 298 to 500 K. Differential scanning calorimeter (DSC) test, dynamic mechanical analysis (DMA), and fiber pull-out test were adopted to complement the experimental results. It is found that all the SDR-time curves follow the linear relationship in hygrothermal environment, while SDR-temperature curves follow a bilinear relationship due to the effect of glass transition temperature (Tg) of the matrix. Fibers modified by coating nano-silica on the surface could decrease SDR of the composites. This is due to the fact that the fillers on the fiber surface could resist the movement of pCBT molecular chain and diffusion of water molecules in aging conditions. The fiber pull-out test verifies that the interface strength between fiber and matrix is enhanced by the modification.  相似文献   

11.
Glass samples of [GeSx]90I10 (x = 1.5, 1.7, 2.0, 2.3, 2.45, 2.6) compositions were prepared, and some their thermal, optical properties as well as tendency to crystallization were investigated. The compositional dependences of glass transition temperature, volume fraction of crystallized phase and activation energy of glass formation (Eg) have nonmonotonic character with a maximum for [GeS2.0]90I10 glass. Glasses of 85.8GeS2–14.2GeI4 and [GeS1.5]90I10 compositions are identified as promising for preparation of optical fiber. For the first time, Ge–S–I glass fibers were produced. Minimum optical losses in 85.8GeS2–14.2GeI4 glass fiber were 2.7 dB/m at a wavelength of 5.1 μm, and that in [GeS1.5]90I10 glass fiber were 14.5 dB/m at 5.5 μm.  相似文献   

12.
Kenaf (Hibiscus Cannabinus) bast fiber reinforced poly(vinyl chloride) (PVC)/thermoplastic polyurethane (TPU) poly-blend was prepared by melt mixing method using Haake Polydrive R600 internal mixer. The composites were prepared with different fiber content: 20%, 30% and 40% (by weight), with the processing parameters: 140 °C, 11 min, and 40 rpm for temperature, time and speed, respectively. After mixing, the composite was compressed using compressing molding machine. Mechanical properties (i.e. tensile properties, flexural properties, impact strength) were studied. Morphological properties of tensile fracture surface were studied using Scanning electron microscope (SEM). Thermal properties of the composites were studied using Thermogravimetric Analyses (TGA). PVC/TPU/KF composites have shown lower tensile strength and strain with increase in fiber content. Tensile modulus showed an increasing trend with increase in fiber content. Impact strength decreased with increase in fiber content; however, high impact strength was observed even with 40% fiber content (20.2 kJ/m2). Mean while; the 20% and 30% fiber contents showed higher impact strength of 34.9, 27.9 kJ/m2; respectively. SEM showed that there is poor fiber/matrix adhesion. Thermal degradation took place in three steps. In the first step, composites as well as the matrix had a similar stability. At the second step, matrix showed a slightly better stability than the composites. At the last step, composites showed a better stability than the matrix.  相似文献   

13.
We reported line–plane-switching infrared (IR) fiber bundle with high-resolution of 0.027 μm1, small numerical aperture (NA) of 0.20 (±0.02), high filling-factor, and bending radius of around 5.0 mm, i.e. extremely good flexibility. This fiber bundle is made from chalcogenide glass fibers, possessing core (As40S58Se2) of 45 μm, cladding (As40S60) of 50 μm, and error of 1% in diameter. Based on the lens used to demonstrate IR push-broom imaging, the format of matching fiber bundle we chose is 64 × 9 in system to implement 192 × 3 format linear array imaging. By principle-demonstrating system incorporated this fiber bundle coupled with small scale Infrared Focal Plane Array (IRFPA), wide-field and long-array IR push-broom image was successfully demonstrated.  相似文献   

14.
In flooring applications, experimental data and insight from scientific investigations on wear properties of wood/polymer composites (WPCs) are important for engineers to understand how to design and formulate WPC materials with high resistance to wear. In this work, three different types of wood flour – namely Xylia kerrii Craib & Hutch., Hevea brasiliensis Linn., and Mangifera indica Linn. – were utilized and incorporated into poly(vinyl chloride) (PVC) with a fixed content (10 phr) of E-chopped strand glass fiber. The physical, mechanical and wear properties, in terms of specific wear rate, were then assessed as a function of wood content and sliding distance. The experimental results suggested that the addition of wood flour increased the flexural modulus and strength up to 40 phr; beyond this concentration, the flexural properties decreased. Hardness was not affected by the addition of wood flour. The mechanical and wear properties of WPVC composites were found to improve with the addition of the E-glass fiber. Xylia kerrii Craib & Hutch. wood exhibited the lowest specific wear rate for non-reinforced WPVC composites, whereas Hevea brasiliensis Linn. wood showed the lowest specific wear rate for the glass fiber reinforced WPVC composites. The longer the sliding distance, the greater the specific wear rate in all cases.  相似文献   

15.
Carbon nanotubes have been considered as a promising means of enhancing the properties of advanced composites in a range of polymer systems. Expected property enhancements include high strength and stiffness, improved toughness, impact and through-thickness properties. Z-axis properties like shear strength are of special interest for laminated composite structures subjected to transverse loads. This paper reports the processing of a glass fiber reinforced vinyl ester composite with nanotube integration and examines the reinforcement potential on interlaminar shear strength. Several sidewall functionalized nanotube derivatives were also prepared in order to obtain high dispersion and matrix bonding. Carbon nanotube enhanced vinyl ester/glass fiber composites were fabricated by a vacuum assisted resin transfer molding process. Overcoating the glass fiber weave with nanotubes and processing modification led to enhancement of the interface properties. A maximum of 45% increase in shear strength over control sample was observed on several types of nanotubes with a very small amount of nanotubes (0.015 wt%) coated in the midplane ply.  相似文献   

16.
Electromagnetic wave transmittances of plain woven fabric glass fiber reinforced epoxy matrix composite (PW-GFRP) and eight-harness-stain fabric glass fiber reinforced polyimide matrix composite (8H-GFRP) with 1.0 mm thickness were measured in a terahertz (THz) frequency range. The transmittance values for both composites are nearly zero at a frequency of 1.0 THz. The real parts of the complex dielectric constant, ε′(ω) are 4.45 and 3.87 for PW-GFRP and 8H-GFRP, respectively, in the frequency range from 0.2 to 1.0 THz, and they are almost frequency independent. Conversely, the imaginary parts of the dielectric constant, ε′′(ω) for both composites linearly increases with increase of the frequency from 0.13 to 0.37 for PW-GFRP, and from 0.12 to 0.33 for 8H-GFRP.  相似文献   

17.
In this research, quasi-static penetration and ballistic properties of non-woven kenaf fibres/Kevlar epoxy hybrid laminates with thicknesses ranging from 3.1 mm to 10.8 mm by hard projectile at normal incidence have been experimentally investigated. Hybrid composites were fabricated by hand lay-up technique in a mould and cured at room temperature for 24 h by static load. Hybrid composites consist of Kevlar layers and non-woven kenaf layers at three different configurations, i.e. kenaf at the innermost layers, outermost layers and at the alternating layers. Kevlar/epoxy and kenaf/epoxy composites were also fabricated for comparison purpose. Quasi-static experiments were conducted using a tensile testing machine at the speed of 1.27 mm/min and 2.54 mm/min. Ballistic tests were conducted using 9 mm full metal jacket bullet using a powder gun at speeds varying from 172 to 339 m/s, with the initial and a residual velocity of the projectiles is measured. The tested sample was carefully examined with respect to failure modes. Results showed the effect of hybridization in term of force–displacement curves, energy dissipation and damage mechanisms for quasi-static test. Maximum force to initiate penetration is higher in hybrid composites compared to kenaf/epoxy and Kevlar/epoxy composites. Hybridization of kenaf–Kevlar resulted in a positive effect in terms of energy absorbed (penetration) and maximum load. In the case of ballistic tests, hybrid composites recorded lower ballistic limit (V50) and energy absorption than the Kevlar/epoxy composite. The V50 of hybrid composites with kenaf at the outermost layers is superior to other hybrid composites. These finding inspired further exploration of hybrid composite for ballistic armour spall-liner application.  相似文献   

18.
Nano TiO2 particle is one of the promising inorganic nano fillers used in polymer matrix composites to enhance the mechanical properties. However, reliability of this type of nano composites is yet to be ensured in hydrothermal environment. The present work investigates the addition of nano TiO2 filler on water sorption, residual strength and thermal properties of glass fiber reinforced polymer (GFRP) composites. The results revealed that addition of 0.1 wt% TiO2 has reduced water diffusion coefficient by 9%, improved residual flexural strength by 19% and residual interlaminar shear strength by 18% among all the nano TiO2 modified composites. The improvement of mechanical properties in hydrothermal environment creates opportunity and reliability to be used in different engineering applications. Weibull design parameters are evaluated and found a good agreement between Weibull stress-strain curves and experimental one. Fractographic analysis confirmed the various failures and strengthening mechanisms of nano composites in dry and hydrothermal environment.  相似文献   

19.
Two different ZrB2-based ultra-high temperature ceramics were produced by hot pressing: ZrB2 + 20 vol.% SiC particle + 15 vol.% ZrO2 fiber and ZrB2 + 20 vol.% SiC whisker + 15 vol.% ZrO2 fiber. The microstructures were analyzed by using transmission electron microscopy and high-resolution transmission electron microscopy. It was shown that a clean interface without any impurities was identified in ZrB2-based hybrid ceramics with SiC whiskers and ZrO2 fibers, which would significantly improve the toughening mechanism. The results of high-resolution transmission electron microscopy showed that stacking faults in SiC whiskers resulted from an insertion of a (111) layer, which would be one of the main reasons for material anisotropy. However, the interface between the SiC particle and ZrO2 fiber was found to be ambiguous in ZrB2-based hybrid ceramics with SiC particles and ZrO2 fibers due to the slight reaction. The orientation relationship between t-ZrO2 and m-ZrO2 phases obeyed the classical correspondence: (100)m//{100}t and [001]m//〈001〉t, which further verified the feasibility of phase transformation toughening mechanism.  相似文献   

20.
This paper reports the accelerated thermal ageing behaviors of pure epoxy resin and 3-D carbon fiber/epoxy braided composites. Specimens have been aged in air at 90 °C, 110 °C, 120 °C, 130 °C and 180 °C. Microscopy observations and attenuated total reflectance Fourier transform infrared spectrometry analyses revealed that the epoxy resin oxidative degradation only occurred within the surface regions. The surface oxidized layer protects inner resin from further oxidation. Both the resin degradation and resin stiffening caused by post-curing effects will influence the compression behaviors. For the braided composite, the matrix ageing is the main ageing mode at temperatures lower than glass transition temperatures (Tg) of the pure epoxy resin, while the fiber/matrix interface debonding could be observed at the temperatures higher than Tg, such as the temperature of 180 °C. The combination of matrix degradation and fiber/resin interface cracking leads to the continuous reduction of compressive behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号