首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The adsorption characteristics of Acid Orange 7(AO7) and Acid Orange 10 (AO10) from aqueous solutions onto the ethylenediamine-modified magnetic chitosan nanoparticles (EMCN) have been investigated. The EMCN were essentially monodispersed and had a main particle size distribution of 15-40 nm and saturated magnetization of 25.6 emu/g. The adsorption experiments indicated that the maximum adsorption capacity occurred at pH 4.0 for AO7 and pH 3.0 for AO10, respectively. Due to the small diameter and the high surface reactivity, the adsorption equilibrium of AO7 and AO10 onto the EMCN reached very quickly. Equilibrium experiments fitted well with the Langmuir isotherm model, and the maximum adsorption capacity of the EMCN at 298K was determined to be 3.47 mmol/g for AO7 and 2.25 mmol/g for AO10, respectively. Thermodynamic parameters such as enthalpy change (ΔH°), free energy change (ΔG°) and entropy change (ΔS°) were estimated and the results indicated that the adsorption process was spontaneous and exothermic. Furthermore, the EMCN could be regenerated through the desorption of the dyes in NH(4)OH/NH(4)Cl solution (pH 10.0) and could be reused to adsorb the dyes again.  相似文献   

2.
利用环己烷/正己醇、壳聚糖、Fe2+/Fe3+盐和Triton X-100组成的W/O微乳体系中加NaOH溶液沉淀剂,原位制备磁性壳聚糖纳米粒子,并经乙二胺改性(EMCN),用于吸附酸性橙12(AO12)和酸性橙10(AO10)。利用透射电镜、X-射线衍射、红外等对产物进行了表征。结果表明,EMCN分散良好,粒径15 nm~40 nm,饱和磁化强度25.6 emu/g。AO12和AO10最佳pH值分别为4.0和3.0;吸附速率很快,平衡时间40 min~60 min。吸附平衡用Langmuir模型拟合最好,饱和吸附容量分别为AO12 2.81 mmol/g,AO10 1.82 mmol/g。由D-R模型计算E值(14.95 kJ/mol~18.54 kJ/mol)表明以化学吸附为主。EMCN可用NH4OH/NH4Cl(pH10.0)溶液再生。  相似文献   

3.
Degradation of gas-liquid gliding arc discharge on Acid Orange II   总被引:1,自引:0,他引:1  
The effects of pH value, initial concentration of dye solution and temperature on the degradation efficiency of Acid Orange II (AO7) using gas-liquid gliding arc discharge were investigated. The influences of pH value and temperature on degradation efficiency were not apparent. Increasing initial solution concentration caused the decrease of degradation rate and the increase of absolute degradation quantity. Considering energy efficiency and absolute degradation quantity, the gas-liquid gliding arc discharge is fit for treating high concentration organic wastewater. A possible mineralization pathway was proposed through the analysis of intermediate products detected by gas chromatograph coupled with mass spectrophotometer (GC-MS) and ion chromatograph (IC). Hydroxyl radicals reacted with the azo linkage-bearing carbon of a hydroxy-substituted ring, leading to the cleavage of -C-N- and degradation of AO7. The solution biodegradability was significantly improved (BOD(5)/COD from 0.02 to 0.43). The toxicity of intermediate products was lower than that of the initial Acid Orange II.  相似文献   

4.
This study represents new material based on chitosan modified by zeolite A as adsorbent for anionic dye, using Bezactive Orange 16 as a model compound. Interactions between dye and chitosan/zeolite A film at initial concentrations and pH dye solution was investigated. In order to determine kinetics and the mechanism of adsorption four kinetic models were used. The results showed that the adsorption of Bezactive Orange 16 dye onto chitosan/zeolite A can be best described by pseudo-second order model. According to the Langmuir model, the maximum adsorption capacity reached 305.8 mg/g. The films could be potentially used as absorbents for anionic dye removal in wastewater treatment process.  相似文献   

5.
6.
Adsorption of anionic dyes on ammonium-functionalized MCM-41   总被引:1,自引:0,他引:1  
Investigations were conducted in a batch reactor system to study the adsorption behavior of four anionic dyes (Methyl orange (MO), Orange IV (OIV), Reactive brilliant red X-3B (X-3B), and Acid fuchsine (AF)) on ammonium-functionalized MCM-41 (NH(3)(+)-MCM-41) from aqueous medium by varying the parameters such as contact time, initial dye concentration, pH and competitive anions. Dye adsorption was broadly independent of initial dye concentration. The intraparticle diffusion model was the best in describing the adsorption kinetics for the four anionic dyes on NH(3)(+)-MCM-41. The adsorption data for the four dyes were well fitted with the Langmuir model. The electrostatic interaction was considered to be the main mechanism for the dye adsorption. Finally, it was observed that the anion of soft acid inhibited the adsorption capacity significantly.  相似文献   

7.
This work was conducted to study the ability of permanganate (KMnO(4)) oxidative treatment as a method to decolourise the solutions containing azo dye C.I. Acid Orange 7, C.I. Acid Orange 8, C.I. Acid Red 14, or C.I. Acid Red 73, in a batch system. The results of the study demonstrated the complete removal of the colour and partial mineralization for each dye solution. The effect of the key operating variables such as initial dye concentration, permanganate amount, pH and temperature were studied. Decolourisation reactions were influenced by the acidity and temperature of the treated solutions. To avoid the overdose of KMnO(4), the stoichiometric amount of permanganate required for 1 mol of dye complete colour removal was determined. The reactions between permanganate and C.I. Acid Orange 7, C.I. Acid Orange 8, C.I. Acid Red 14 and C.I. Acid Red 73 dyes in acidic medium exhibit (2.05, 2.20, 2.42 and 2.79):1 stoichiometry (MnO(4)(-):dye). Dye degradation efficiency by potassium permanganate was studied, monitoring total organic carbon (TOC). The results indicated that the degradation efficiency of azo dyes increased with the increase of the potassium permanganate amount. Meanwhile, even in large excess of the oxidant, the dye mineralization was incomplete.  相似文献   

8.
The removal of C.I. Acid Orange 7 (AO7) from aqueous solution under UV irradiation in the presence of ZnO nanopowder has been studied. The average crystallite size of ZnO powder was determined from XRD pattern using the Scherrer equation in the range of 33 nm. The experiments showed that ZnO nanopowder and UV light had a negligible effect when they were used on their own. The effects of some operational parameters such as pH, the amount of ZnO nanopowder and initial dye concentration were also examined. The photodegradation of AO7 was enhanced by the addition of proper amount of hydrogen peroxide, but it was inhibited by ethanol. From the inhibitive effect of ethanol, it was deducted that hydroxyl radicals played a significant role in the photodegradation of the dye. The kinetic of the removal of AO7 can be explained in terms of the Langmuir-Hinshelwood model. The values of the adsorption equilibrium constant, K(AO7), and the kinetic rate constant of surface reaction, k(c), were 0.354(mg l(-1))(-1) and 1.99 mg l(-1)min(-1), respectively. The electrical energy consumption per order of magnitude for photocatalytic degradation of AO7 was lower in the UV/ZnO/H(2)O(2) process than that in the UV/ZnO process. Accordingly, it could be stated that the complete removal of color, after selecting desired operational parameters could be achieved in a relatively short time, about 60 min.  相似文献   

9.
The removal of azo dye Acid Orange 7 (AO7) from water was investigated by the electro-Fenton technology using electrogenerated hydroxyl radicals (OH) which leads to the oxidative degradation of AO7 up to its complete mineralization. H(2)O(2) and Fe (II) ions are electrogenerated in a catalytic way at the carbon-felt cathode. AO7 decay kinetics and evolution of its oxidation intermediates were monitored by high-performance liquid chromatography. The absolute rate constant of AO7 hydroxylation reaction has been determined as (1.20+/-0.17)x10(10)M(-1)s(-1). The optimal current value for the degradation of AO7 was found as 300 mA. AO7 degradation rate was found to decrease by increase in Fe(3+) concentration beyond 0.1mM. Mineralization of AO7 aqueous solutions was followed by total organic carbon (TOC) measurements and found to be 92%. Based on TOC evolution and identification of aromatic intermediates, short-chain carboxylic acids and inorganic ions released during treatment, a plausible mineralization pathway was proposed.  相似文献   

10.
This paper deals with the application of Soy Meal Hull (SMH), an agricultural by-product, for the removal of direct and acid dyes from aqueous solutions. Four textile dyes, C.I.Direct red 80 (DR80), C.I.Direct red 81 (DR81), C.I.Acid blue 92 (AB92) and C.I.Acid red 14 (AR14) were used as model compounds. Physical characteristics of SMH such as surface area, Fourier transform infra-red (FTIR) and scanning electron microscopy (SEM) were obtained. The surface area of SMH was found to be 0.7623 m(2)/g and the presence of functional groups such as hydroxyl, amine and carbonyl groups were detected. The effect of initial dye concentration, pH, contact time and SMH doses were elucidated at 20+/-1 degrees C. Results show that the pH value of 2 is favorable for the adsorption of all four dyes. The data evaluated for compliance with the Langmuir, Freundlich and BET isotherm models. It was found that data for DR80 and DR81 fitted well with Langmuir isotherm, for AB92, BET isotherm is preferred, while for AR14, the Freundlich isotherm is the most applicable. The adsorption capacities of SMH for DR80, DR81, AB92 and AR14 were, 178.57, 120.48, 114.94 and 109.89 mg/g of adsorbent, respectively. Also, adsorption kinetics of dyes was studied and the rates of sorption were found to conform to pseudo-second order kinetics with good correlation (R(2)> or =0.9977). Maximum desorption of > or =99.8% was achieved for DR80, DR81 and AB92 and 86% for AR14 in aqueous solution at pH 10. Based on the data of present investigation, one could conclude that the SMH being a natural, eco-friendly and low-cost adsorbent with relatively large adsorption capacity might be a suitable local alternative for elimination of dyes from colored aqueous solutions.  相似文献   

11.
Developing a novel biosorbent with high capacity is crucial to remove dyes from waters in an efficient way. This study demonstrated that porous anaerobic granular sludge could be grafted with polyethylenimine (PEI), which definitely improved the sorption capacity towards Acid Red 18 (AR18) removal. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) study revealed that the PEI modification introduced a large number of amino groups on the surface of sludge, and the amino groups played an important role in the adsorption of dye molecule. Analysis of sorption data using a Boyd plot confirms the film diffusion was the rate-limiting step. The equilibrium data were well fitted Langmuir model, with a maximum AR18 uptake of 520.52 mg/g. Removal of AR18 decreased with the increasing pH and the maximum color removal was observed at pH 2.0. The sorption energy calculated from Dubinin-Radushkevich isotherm was found to be less than 8 for the biosorption of AR 18, which suggested that the biosorption processes of dye molecule onto modified anaerobic granules could be taken place by physical adsorption. Various thermodynamic parameters, such as ΔG(0), ΔH(0) and ΔS(0), were also calculated, which indicated that the present system was spontaneous and endothermic process.  相似文献   

12.
The decolorization of 180 microM aqueous solutions of Acid Orange 7 (AO7) by means of a non-thermal plasma technique (i.e., the gas-liquid gliding arc discharge, which is generated between at least two metal electrodes with AC high voltage) was investigated in this paper. The effects of the plasma treatment time and the type of feeding gas, including air, oxygen, nitrogen and argon of the dye removal were determined. It is found that the voltage cycles of the gas-liquid gliding arc discharge are characterized by a moderate increase in the tension which is represented by a peak followed by an abrupt decrease and a current peak in the half period (10 ms); the concentration of AO7 solution decreases exponentially to reach 58.9, 77.4, 89.1, 95.1 and 99% in 25, 50, 75, 100 and 125 min, respectively, and the ln(Ct/C0) varies linearly with the treatment time t, indicating that decolorization reaction follow first pseudo-order kinetics with a constant rate of 0.03327 min(-1) when air was used as feeding gas; the decolorization rate during the plasma treatment is the greatest for oxygen as the feeding gas, in turn followed by air and argon, and was the least when using nitrogen. The variations of pH and conductivity and the formations of hydrogen peroxide and ozone are measured.  相似文献   

13.
The degradation of azo dye C.I. Acid Red 14 (AR14) was investigated using cast iron in the absence and presence of low frequency ultrasound (59 kHz). The effects of pH, amount of cast iron ([Fe](0)) and initial concentration of AR14 ([dye](0)) on the degradation of AR14 by cast iron combined with low frequency ultrasound had been assessed. The degradation followed the first-order kinetics model. The first-order rate constant of AR14 degradation by cast iron was 7.50 x 10(-2) min(-1) while that by US-cast iron was 2.58 x 10(-1) min(-1). A 3.4-fold increase in the reaction rate was observed in the presence of ultrasound compared with that of absence of ultrasound. This kinetic effect is quantitatively accounted for a simple kinetic model based on the reaction of Fe(II) from cast iron in aqueous solution with sonochemically produced H(2)O(2) (Fenton's reaction). This latter effect illustrates a simple way of achieving a substantial improvement in the efficiency of sonochemical degradation reactions. It was found that for azo dye AR14, the rate of color decay was the first order with respect to the visible absorption of the dye. The destruction of the naphthalene rings in azo dyes was slower than that of color. A significant mineralization of AR14 was observed.  相似文献   

14.
The biosorption of Acid Red 274 (AR 274) dye on Enteromorpha prolifera, a green algae grown on Mersin costs of the Mediterranean, Turkey, was studied as a function of initial pH, temperature, initial dye and biosorbent concentration. The experiments were conducted in a batch manner. The Langmuir and Freundlich isotherms were used for modelling the biosorption equilibrium. At optimum temperature 30 degrees C and initial pH 2.0-3.0, the Langmuir isotherm fits best to the experimental equilibrium data with a maximum monolayer coverage of 244 mg/g. The equilibrium AR 274 concentration of the exit stream of a single batch was also obtained by using the experimental equilibrium curve and operating line graphically. The pseudosecond-order kinetic model and Weber-Morris model were applied to the experimental data and it was found that both the surface adsorption as well as intraparticle diffusion contribute to the actual adsorption process. The biosorption process follows a pseudosecond-order kinetics and activation energy was determined as -4.85 kJ/mol. Thermodynamic studies showed that the biosorption of AR 274 on E. prolifera is exothermic and spontaneous in nature.  相似文献   

15.
This study utilizes canola stalks (CS), an agro-residue, as a biosorbent to remove two different dyes, namely Acid Orange 7 (AO7) and Remozol Black 5 (RB5) from aqueous solutions. The effects of operational parameters on the efficiency of dye removal including pH, adsorbent mass, initial dye concentration and contact time have been investigated. For both tested dyes, the maximum absorption capacity was reached at initial pH 2.5 and 120 min contact time. The results showed that the absorption of both dyes depended on the pH of milieu, temperature, dye and CS concentrations. Freundlich and Langmuir models were used to analyze the obtained experimental data. The isotherms are found to be linear over the entire concentration range for both dyes. The highest value of linear correlation coefficients for AO7 (0.9926) and RB5 (0.9882) showed that the Langmuir is the best model to fit the experimental data. Kinetic study of absorption was done applying the pseudo first-order and the pseudo second-order equations. Absorption of both dyes could be well predicted by the pseudo second-order equation. The obtained results are very promising since: (i) high levels of dye removal (> 90%) were achieved with low contact times biosorbent/dye (less than 20 min contact); and (ii) the whole CS can be successfully used as biosorbent of AO7 and RB5 dyes in aqueous solution without needing any chemical modifications.  相似文献   

16.
A novel microwave electrodeless lamp (MWL) rather than traditional electrode lamp (TEL) was used in a H(2)O(2)/MWL system as light source. This technique provided a new way to study the simultaneous effect of both UV-vis light and microwave irradiations. This study showed that H(2)O(2)/MWL process was 32% more effective than H(2)O(2)/TEL process in degrading azo dye Acid Orange 7 (AO7). Further study found that the degradation of AO7 by the H(2)O(2)/MWL process was initiated by the attack of HO* radicals generated by the photolysis of H(2)O(2). However, the direct photolysis of AO7 by MWL irradiation was not negligible. Effect of operation parameters, such as the initial concentrations of AO7 and H(2)O(2) and pH, were investigated. A kinetic model of degradation of AO7 by H(2)O(2)/MWL process was found, in which not only the HO* oxidation but also direct photolysis were considered. The kinetic model was consistent with the experiment results. The degradation of AO7 by H(2)O(2)/MWL corresponded to a pseudo-first order reaction. The apparent reaction constant (k(ap)) was a function of initial concentrations of H(2)O(2) and AO7 and pH of the solution.  相似文献   

17.
The decolorization of C.I. Acid Orange 7 (AO7), an anionic monoazo dye of acid class was investigated using UV/H(2)O(2) process in an annular continuous-flow photoreactor (ACFP) as a function of oxidant, dye concentrations, reactor length and volumetric flow rate. The removal efficiency of AO7 was a function of operational parameters and increased with increasing initial concentration of H(2)O(2) but it was low at high flow rate and initial concentration of AO7. Results indicated that the decolorization rate was pseudo-first order kinetic with respect to the dye concentration. A rate equation for decolorization of AO7 was obtained by kinetic modeling. Design equation for ACFP reactor was obtained with combination of kinetic model and rearranged tubular reactor design equation. Design equation was used for predicting concentration of AO7 and also electrical energy per order (E(EO)) at different conditions. The calculated results obtained from design equation and kinetic model were in good agreement with experimental data.  相似文献   

18.
The adsorption of reactive dye (Reactive Red 189) from aqueous solutions on cross-linked chitosan beads was studied in a batch system. The equilibrium isotherms at different particle sizes (2.3-2.5, 2.5-2.7 and 3.5-3.8mm) and the kinetics of adsorption with respect to the initial dye concentration (4320, 5760 and 7286 g/m(3)), temperature (30, 40 and 50 degrees C), pH (1.0, 3.0, 6.0 and 9.0), and cross-linking ratio (cross-linking agent/chitosan weight ratio: 0.2, 0.5, 0.7 and 1.0) were investigated. Langmuir and Freundlich adsorption models were applied to describe the experimental isotherms and isotherm constants. Equilibrium data fitted very well to the Langmuir model in the entire saturation concentration range (0-1800 g/m(3)). The maximum monolayer adsorption capacities obtained from the Langmuir model are very large, which are 1936, 1686 and 1642 g/kg for small, mediumand large particle sizes, respectively, at pH 3.0, 30 degrees C, and the cross-linking ratio of 0.2. The pseudo first- and second-order kinetic models were used to describe the kinetic data, and the rate constants were evaluated. The experimental data fitted well to the second-order kinetic model, which indicates that the chemical sorption is the rate-limiting step, instead of mass transfer. The initial dye concentration and the solution pH both significantly affect the adsorption capacity, but the temperature and the cross-linking ratio are relatively minor factors. An increase in initial dye concentration results in the increase of adsorption capacity, which also increases with decreasing pH. The activation energy is 43.0 kJ/mol for the adsorption of the dye on the cross-linked chitosan beads at pH 3.0 and initial dye concentration 3768 g/m(3).  相似文献   

19.
Wastewater from textile processing plants can be highly colored and difficult to decolorize. During the past few years attention has been drawn to chemical techniques that could be used to textile wastewater decolorization. A crucial feature in designing such systems is the optimization of operating conditions. In the present study, advanced oxidation treatment, the UV/H(2)O(2) process has been applied to decolorization of the azo dye C.I. Acid Orange 7 (AO7) in aqueous solution in a batch photo reactor. The effects of the reactor gap size and UV dosage on decolorization of dye have been investigated. The method of study involved monitoring the rate of dye solution decolorization during irradiation by a low-pressure mercury lamp and varying gap size and volume of the reactor. The rate of color removal was studied by measuring of the absorbance at characteristic wavelength. The gap size of the reactor was adjusted by different depths of the reactor. The results of this study showed that the removal efficiency of AO7 is optimal with 0.3 cm gap size and 83.33 Wl(-1) of UV dosage.  相似文献   

20.
A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号