首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple electrospinning progress, directly mixing method, was used to produce ultrafine poly(phenylene vinylene)/TiO2 (PPV/TiO2) composite nanofibers with diameters ranging from 100 to 300 nm. The effects of different TiO2 content on diameter, morphology, and structure of composite fibers were analyzed by scanning electron microscopy and transmission electron microscope. The results showed that composite polymer nanofibers with smooth surface were obtained when TiO2 concentration was below 18 wt %. The surface of the composite nanofibers became rougher with the increase of TiO2 content. The optical properties of the as‐prepared nanofibers were characterized by photoluminescence spectra and photographs, the results showed an increase in intensity of the high‐energy shoulder (510 nm) when the concentration of nanoparticles increased. X‐ray diffraction measurements showed that the increasing TiO2 content enhanced the amorphous phase of PPV in composite nanofibers. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Chitosan/poly(vinyl alcohol) (PVA) nanofibers with antibacterial activity were prepared by the electrospinning of a chitosan/PVA solution with a small amount of silver nitrate (AgNO3) and titanium dioxide (TiO2). Nanofibers with diameters of 270–360 nm were obtained. The yield of low‐viscosity chitosan (LCS)/PVA nanofibers was higher than that of high‐viscosity chitosan (HCS)/PVA, and the water content of the HCS/PVA nanofibers and the LCS/PVA nanofibers were 430 and 390%, respectively. The nanofibers developed in this study exhibited antibacterial activities of 99 and 98% against Staphylococcus aureus and Escherichia coli, respectively. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The mechanical stability of titania (TiO2) nanofibers was improved by fabricating TiO2/poly(dimethyl siloxane) (PDMS) composite fibers using a combination of hybrid electrospinning and sol‐gel methods, followed by heat treatment at 250°C for 3 h. The compositions (90/10, 80/20, and 70/30, w/w) of the TiO2/PDMS composite fibers were varied by adjusting the flow rate of the PDMS sol with the flow rate of TiO2 sol fixed. There was no significant change in morphology and average diameter of the as‐spun TiO2/PDMS fibers after heat treatment. Both the tensile strength and modulus of the TiO2/PDMS composite fibers increased gradually with increasing PDMS content up to 30 wt %. In addition, from the photo‐degradation reaction of methylene blue, the photocatalytic activity of TiO2/PDMS composite fibers was strongly dependent on the TiO2 content (%) in the composite fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

5.
Silicotungstic acid (H4SiW12O40)/poly(vinyl alcohol) (PVA)/poly(methyl methacrylate) (PMMA) composite nanofiber membranes were prepared by an electrospinning technique. A PMMA emulsion was mixed with PVA and H4SiW12O40 evenly in water (electrospinning solvent). The configuration and elemental composition of the membranes were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and X‐ray photoelectron spectroscopy. The results indicate that H4SiW12O40 with an intact Keggin structure existed in the composite membrane. The as‐prepared H4SiW12O40/PVA/PMMA membranes exhibited enhanced photocatalytic efficiency (>84%) in the degradation of methyl orange (MO); it outperformed H4SiW12O40 powder (4.6%) and the H4SiW12O40/PVA nanofiber membrane (75.2%) under UV irradiation. More importantly, the H4SiW12O40/PVA/PMMA membranes could be easily separated from the aqueous MO solution, and the photocatalytic efficiency of the membranes decreased inappreciably after three photocatalytic cycles. This may have been due to the enhanced water tolerance of the membranes and the stability of H4SiW12O40 in the membranes. The photocatalytic process was driven by the reductive pathway with a much faster degradation rate because of the presence of PVA. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43193.  相似文献   

6.
Nanofibers of poly(vinyl alcohol) (PVA)/layered double hydroxide (Mg‐Al LDH) composites are prepared by the electrostatic fiber spinning using water as the solvent at a high voltage of 21 kV. Either inorganic LDH carbonate (LDH‐CO3) or L ‐lactic acid‐modified LDH (Lact‐LDH) is used for incorporating with PVA. Scanning electron microscopy SEM investigations on the nanofibers suggest that the average diameters of PVA/LDH composite fibers are smaller than that of neat PVA. Transmission electron microscopy (TEM) investigations indicate that the dispersity of the LDH in PVA matrix is much improved after modification with L ‐lactic acid. The mechanical properties of the PVA/LDH fibers are obviously enhanced compared to that of neat PVA. For example, the tensile stress and elongation at break of the PVA/Lact‐LDH electrospun fibrous mat with 5 wt % Lact‐LDH are 31.7 MPa and 36.7%, respectively, which are significantly higher than those of neat PVA, and also higher than those of PVA/LDH‐CO3 owing to the better dispersity of Lact‐LDH nanoparticles. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Thiol-functionalized mesoporous poly (vinyl alcohol)/SiO2 composite nanofiber membranes and pure PVA nanofiber membranes were synthesized by electrospinning. The results of Fourier transform infrared (FTIR) indicated that the PVA/SiO2 composite nanofibers were functionalized by mercapto groups via the hydrolysis polycondensation. The surface areas of the PVA/SiO2 composite nanofiber membranes were >290 m2/g. The surface areas, pore diameters and pore volumes of PVA/SiO2 composite nanofibers decreased as the PVA content increased. The adsorption capacities of the thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes were greater than the pure PVA nanofiber membranes. The largest adsorption capacity was 489.12 mg/g at 303 K. The mesoporous PVA/SiO2 composite nanofiber membranes exhibited higher Cu2+ ion adsorption capacity than other reported nanofiber membranes. Furthermore, the adsorption capacity of the PVA/SiO2 composite nanofiber membranes was maintained through six recycling processes. Consequently, these membranes can be promising materials for removing, and recovering, heavy metal ions in water.  相似文献   

8.
Polymer/semiconductor oxide nanocomposite films have been intensively investigated for various applications. In this work, we reported a simple hydrothermal method to fabricate highly transparent poly(vinyl alcohol)/titanium dioxide (PVA/TiO2) nanocomposite films with enhanced visible-light photocatalytic activity. The as-prepared PVA/TiO2 nanocomposite films showed high optical transparency in the visible region even at a high TiO2 content (up to 40 wt.%). The determination of photocatalytic activity by photodegradation of methyl orange (MO) and colorless phenol showed that PVA/TiO2 nanocomposite films exhibited enhanced visible-light photocatalytic activity and excellent recycle stability. This work provided new insights into fabrication of polymer/TiO2 nanocomposites as high performance photocatalysts in waste water treatment.  相似文献   

9.
A novel wound dressing material was prepared by electrospinning poly(vinyl alcohol) (PVA)/AgNO3 aqueous solution into nonwoven webs and then treating the webs by heat or UV radiation. Through SEM, TEM, and XPS analyses, it was observed that the silver (Ag) nanoparticles were generated and existed in the near surface of the electrospun nanofibers. It was found that heat treatment as well as UV radiation reduced the Ag+++ ions in the electrospun PVA/AgNO3 fiber web into the Ag nanoparticles. Also the heat treatment improved the crystallinity of the electrospun PVA fiber web and so it made the web unsolved in moisture environment. Therefore, it was concluded that the only heat treated electrospun PVA/AgNO3 fiber web was a good material as wound dressings because it had structural stability in moisture environment as well as excellent antimicrobial ability and, quick and continuous release of the effectiveness. POLYM. ENG. SCI., 47:43–49, 2007. © 2006 Society of Plastics Engineers  相似文献   

10.
Mixed rutile–anatase TiO2 nanoparticles were synthesized by hydrothermal treatment under acidic conditions and incorporated into poly(vinyl alcohol) (PVA). These nanocomposites were electrospun to produce nanofibers of PVA/TiO2, which were characterized by scanning electron microscopy, transmission electron microscopy, X‐ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The photocatalytic degradation of Rhodamine B and degradation of the polymer by UV‐C lamps were also investigated. The results showed that TiO2 nanoparticles did not change the morphology and thermal behavior of the nanofiber polymer, but were effective in modifying the UV absorption of PVA without reducing its stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Interpenetrating polymer networks (IPNs) composed of poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAAc) exhibited electrical-sensitive behavior. PAAc as an initial network was prepared inside a PVA solution using UV irradiation; then, PVA networks as a secondary network were formed by a repetitive freeze–thawing process. Their mechanical properties were influenced by the swelling ratio, crosslinking by UV radiation and a freeze–thawing process, and intermolecular force by hydrogen bonding. When a swollen PVA/PAAc IPN was placed between a pair of electrodes, the IPN exhibited bending behavior upon the applied electric field. The equilibrium bending angle (EBA) and the bending speed of the PVA/PAAc IPN increased with the applied voltage and the content of the PAAc network having negatively charged ionic groups within the IPN. The electroresponsive behavior of the present IPN was also affected by the electrolyte concentration of the external solution. Particularly, IPN37 showed a maximum EBA when the critical ionic strength was 0.1. Anisotropic deswelling of the IPN was observed in a direct contact with a pair of electrodes under aerobic conditions. The PVA/PAAc IPN also showed stepwise bending behavior depending on the electric stimulus. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1675–1683, 1999  相似文献   

12.
The electrospun nanofibers emerge several advantages because of extremely high specific surface area and small pore size. This work studies the effect of PVA nanofibers diameter and nano‐sized TiO2 on optical properties as reflectivity of light and color of a nanostructure assembly consisting polyvinyl alcohol and titanium dioxide (PVA/TiO2) composite nanofibers prepared by electrospinning technique. The PVA/TiO2 composite spinning solution was prepared through incorporation of TiO2 nanoparticles as inorganic optical filler in polyvinyl alcohol (PVA) solution as an organic substrate using the ultrasonication method. The morphological and optical properties of collected composites nanofibers were highlighted using scanning electron microscopy (SEM) and reflective spectrophotometer (RS). The reflectance spectra indicated the less reflectance and lightness of composite with higher nanofiber diameter. Also, the reflectance and lightness of nanofibers decreased with increasing nano‐TiO2 concentration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Tetracycline hydrochloride loaded poly (vinyl alcohol)/chitosan/ZrO2 (Tet‐PVA/CS/ZrO2) hybrid nanofibers were fabricated via electrospinning technique. The representative weight ratio of PVA/CS at 3 : 1 was chosen to fabricate drug carrier PVA/CS/ZrO2 nanofibers. The drug carrier showed a decrease in average diameter with the increase of ZrO2 content at given conditions, and the nanofibers were uneven and interspersed with spindle‐shape beads with ZrO2 content at 60 wt % and above. The networks linked by hydrogen and Zr–O–C bonds among PVA, CS, and ZrO2 units resulted in the improving of thermal stability and decreasing of crystallinity of the polymeric matrix. Moreover, the incorporation of ZrO2 endowed the fibers with ultraviolet shielding effect ranged from 200 to 400 nm. The Tet loading dosage had no obvious effect on the morphology and size of the medicated nanofibers at Tet content below 8 wt %, but interspersed with spindle‐shaped beads when Tet content increased to 10 wt %. The Tet‐PVA/CS/ZrO2) nanofibers showed well controlled release and better antimicrobial activity against Staphylococcus aureus, and the Tet release from the medicated nanofibers could be described by Fickian diffusion model for Mt /M< 0.6. These medicated nanofibers may have potential as a suitable material in drug delivery and wound dressing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42506.  相似文献   

14.
Nanocomposite films for food packaging applications were developed using bacterial cellulose (BC) nanofibers in different amount in a poly(vinyl alcohol)/starch (PVA/St) matrix. In search of a better method to reduce the harmful ingredients in food packaging, the cellulose nanofibers were obtained by the mechanical defibrillation of BC pellicles thus avoiding the addition of chemicals in the final packaging material. Improved mechanical performances were obtained starting from just 1% BC nanofibers in PVA/St. Atomic force microscopy images showed a uniform dispersion of BC nanofibers on the surface of nanocomposites. A twofold increase of both tensile strength and modulus was obtained for 2 wt % BC in the composite. BC nanofibers have greatly improved the barrier properties of PVA/St matrix, a twofold increase of water vapor permeability being obtained for only 2 wt % BC nanofibers in the composite film. PVA/St/2BC was proposed as a high potential material for food packaging applications. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45800.  相似文献   

15.
In this study, three sets of different bilayered composite coatings of pyrrole and N-substituted pyrroles were synthesized by a layer-by-layer approach on copper surface and corrosion performances of the synthesized materials were compared. Electrodepositions of poly(N-methylpyrrole), poly(N-phenylpyrrole), and poly(N-methoxyphenylpyrrole) were performed in nonaqueous medium on a poly(pryrrole)-coated copper surface using cyclic voltammetry. The morphologies of the resulting bilayered composite coatings of poly(pyrrole)/poly(N-methylpyrrole), poly(pyrrole)/poly(N-phenylpyrrole), and poly(pyrrole)/poly(N-methoxyphenylpyrrole) were investigated by scanning electron microscopy. Stabilities of a doping-dedoping process of the composites were determined from the cyclic voltammetric study of the bilayer-coated electrodes in a monomer-free solution. Corrosion performances of the bilayer composite-coated and uncoated copper electrodes were investigated in 0.1 M H2SO4 solution using open circuit potential–time (E ocpt) curves, anodic polarization, and electrochemical impedance spectroscopy. All the investigated bilayered coatings gave significant enhancement in the corrosion resistance of copper, compared to the single poly(pyrrole) coating. Stability and corrosion tests revealed that the composite material poly(pyrrole)/poly(N-methoxyphenylpyrrole) exhibited higher electrochemical stability and corrosion resistant behavior than the other bilayered composite coatings.  相似文献   

16.
Poly(lactic acid)/titanium dioxide (TiO2) composite films were prepared by direct melt processing using three different procedures (i.e., compression molding, twin‐screw melt extrusion, and melt extrusion and thermoforming). The effect of TiO2 loading and processing procedures on the phase morphology and on the thermal, mechanical, and barrier properties of the obtained nanocomposites were analyzed respectively by field‐emission scanning electron microscopy‐energy dispersive spectrometry, differential scanning calorimetry, universal testing machine, and water vapor and oxygen permeability measurements. The incorporation of TiO2 nanoparticles into the poly(lactic acid) matrix increased the crystallinity and improved the barrier properties of the composites. The maximum tensile strength was achieved at the 2% content of TiO2 for the films produced by compression molding and twin‐screw melt extrusion, whereas the tensile strength for films produced by melt extrusion and thermoforming decreases markedly with an increasing TiO2 content. The photocatalytic activities of the obtained nanocomposites were investigated by analyzing the degradation of methyl orange. Results confirmed that the processing procedures and the distribution of TiO2 in the polymer matrix are the key parameters, which rule the photocatalytic behavior of composite films. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

17.
Sulfonated poly(ether ether ketone) (SPEEK) is currently considered to be one of the most potential candidates of commercial perfluorinated sulfonic acid proton exchange membranes. To balance the proton conductivity and mechanical properties of SPEEK, nano TiO2 coated carbon nanotubes (TiO2@CNTs) were prepared using a benzyl alcohol-assisted sol-gel method and then used as a new nanofiller to modify SPEEK to prepare SPEEK/TiO2@CNTs composite membranes. The thick insulated TiO2 coating layer can effectively avoid the risk of electronic short-circuiting formed by CNTs, while the hydrophilicity of TiO2 can also reduce the polar difference between CNTs and SPEEK matrix, thus promoting the homogeneous dispersion of CNTs in the composites. As a result, the composite membranes demonstrated simultaneously improved strength and proton conductivity. Incorporating 5 wt% of TiO2@CNTs exhibited 31% growth in mechanical strength when compared with pure SPEEK. Moreover, the maximum conductivity was 0.104 S cm−1 (80°C) for the composite membrane with 5 wt% of TiO2@CNTs, which was nearly twice as high as that of SPEEK membrane (0.052 S cm−1).  相似文献   

18.
Poly(vinyl alcohol) (PVA)/silver composite nanofibers were successfully prepared by the electrospinning method. Water‐based colloidal silver in a PVA solution was directly mixed without any chemical or structural modifications into PVA polymer fibers to form organic–inorganic composite nanofibers. The ratio of silver colloidal solution to PVA played an important role in the formation of the PVA/silver composite nanofibers. We prepared two different atactic PVA/silver nanocomposites with number‐average degrees of polymerization of 1700 and 4000 through electrospinning with various processing parameters, such as initial polymer concentration, amount of silver colloidal solution, applied voltage, and tip‐to‐collector distance. The PVA/silver composite nanofibers were characterized by field emission scanning electron microscopy and transmission electron microscopy (TEM). TEM images showed that silver nanoparticles with an average diameter of 30–50 nm were obtained and were well distributed in the PVA nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Poly(vinyl alcohol) (PVA)/graphene oxide (GO)/copper sulfate pentahydrate (CuSO4·5H2O) composite films were prepared by the solution casting method, and the effect of CuSO4·5H2O on the structure and properties of the PVA/GO composites was investigated. Fourier transform infrared (FTIR) analysis proved the crosslinking interaction between CuSO4·5H2O and the ? OH group of PVA. The crystallinity of the composite films increased first and then decreased. For the composite films, the tensile strength, Young's modulus, and yield stress values improved with increasing CuSO4·5H2O, whereas the elongation at break decreased compared with that of the neat PVA/GO composite film. The thermogravimetric analysis (TGA) and derivative thermogravimetry (DTG) patterns of the PVA/GO/CuSO4·5H2O composite films showed that the thermal stability decreased; this was consistent with the TGA–FTIR analysis. A remarkable improvement in the oxygen‐barrier properties was achieved. The oxygen permeability coefficient was reduced by 60% compared to that of the neat PVA/GO composite film. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44135.  相似文献   

20.
Nano‐TiO2/carboxymethyl chitosan (CMCS)/poly(vinyl alcohol) (PVA) ternary nanocomposite hydrogels were prepared by freezing–thawing cycles and electron‐beam radiation with PVA, CMCS, and nano‐TiO2 as raw materials. The presence of nano‐TiO2 nanoparticles in the composite hydrogels was confirmed by thermogravimetry, Fourier transform infrared spectroscopy, and X‐ray powder diffraction. Field emission scanning electron microscopy images also illustrated that the TiO2/CMCS/PVA hydrogel exhibited a porous and relatively regular three‐dimensional network structure; at the same time, there was the presence of embedded nano‐TiO2 throughout the hydrogel matrix. In addition, the nano‐TiO2/CMCS/PVA composite hydrogels displayed significant antibacterial activity with Escherichia coli and Staphylococcus aureus as bacterial models. The antibacterial activity was demonstrated by the antibacterial circle method, plate count method, and cell density method. Also, with the Alamar Blue assay, the cytotoxicity of the composite hydrogel materials to L929 cells was studied. The results suggest that these materials had no obvious cytotoxicity. Thus, we may have developed a novel, good biocompatibility hydrogel with inherent photosensitive antibacterial activity with great potential for applications in the fields of cosmetics, medical dressings, and environmental protection. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44150.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号