首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural fiber composites (NFCs) have strong potential to replace glass fiber-reinforced plastics. An instrumental operation in machining composite structures is hole making which facilitates assembly of parts. Understanding the effects of drilling process parameters on feature properties of NFCs has great benefits. In this regard, to make a good quality and accurate hole in composite structures, appropriate selection of drill bit and cutting parameters is important. This paper investigates delamination behavior and hole quality of flax/epoxy composite laminates in response to feed, spindle speed, and three different types of drill bit. As indicated by analysis of variance results, drill bit type and feed have greater influences on the thrust force. It appeared that delamination factor and surface roughness were significantly influenced by drill bit, but not by feed and spindle speed. The choice of drill bit has great impact on the delamination factor (67.27%) and surface roughness (74.44%), respectively.  相似文献   

2.
为探索能够实现碳纤维增强复合材料(CFRP)层合板低损制孔的钻头几何形状,采用4种不同几何形状的钻头,对T800级CFRP层合板进行钻孔实验研究,分析了钻头几何形状对钻削轴向力的影响,探讨了钻削轴向力与分层损伤之间的关系。结果表明:轴向力归零速度与出口分层因子有较好的正相关性,可采用钻削轴向力归零速度来表征钻头几何形状对CFRP层合板钻孔的适用性能。同时,实验发现切削区域具有多阶段几何特征的钻头,在钻出工件底部时轴向力是分阶段缓慢归零,出口分层因子较小。   相似文献   

3.
针对传统钻孔方法加工复合材料时易导致分层、撕裂等缺陷的问题,采用螺旋铣作为新的制孔技术,根据飞机装配现场的实际加工条件,构建以机器人为移动载体、螺旋铣孔终端执行器为加工单元、螺旋铣孔专用刀具为切削工具的加工系统,采用该加工系统对碳纤维增强复合材料(CFRP)螺旋铣孔关键工艺参数进行正交试验,并讨论了刀具主轴转速、每齿进给量和轴向切削深度等工艺参数对切削力的影响规律;通过对加工缺陷的监测,探讨了切削力与CFRP分层、撕裂等缺陷之间的关系;最后对工艺参数进行优化,经试验验证,优化后轴向切削力较优化前降低26%以上,孔入口及出口处均无撕裂、毛刺,加工质量最优。  相似文献   

4.
基于VMC850B立式加工中心和UltraPAC超声C-扫描仪,搭建了碳纤维增强树脂基复合材料(CFRP)钻削试验平台,探讨了台阶钻结构参数及钻削工艺参数对CFRP钻削过程中的钻削轴向力和分层因子的影响。结果表明,钻削工艺参数对第一段钻削轴向力影响较大,台阶钻结构参数对第二段钻削轴向力的影响较大;分层因子的大小与第一段钻削轴向力和第二段钻削轴向力有关,当第一段和第二段直径比d/D0.5时,分层因子主要与第一段钻削轴向力有关;减小分层的优水平组合为第一段直径2.8mm,第二段锋角95°,主轴转速7000r/min,进给速度2.5mm/s。  相似文献   

5.
Study of drilling of composite material and aluminium stack   总被引:1,自引:0,他引:1  
Drilling of CFRP/Al or CFRP/Ti, or Al/CFRP/Ti is a challenge to manufacturing engineers. Drilling of CFRP is manageable but the minute drill hits the Al or Ti, those hot and continuous chips destroy the hole. Few studies are carried out in this aspect; CFRP/Al is not reported till date. It is important to select right process parameters when drilling multimaterial stack since each material in the stack requires a different set of machining parameters. Hence, Drilling trials have been carried out in carbon-fibre reinforced plastics (CFRP)/aluminium (Grade 2024) stack without coolant, with plain carbide (K20) drills of various diameters to choose optimum process parameters. The parametric influences on thrust force, torque as well as surface finish were experimentally evaluated. The experimental results show that the quality of holes can be improved by proper selection of cutting parameters. This is substantiated by monitoring thrust force, torque, surface finish, circularity and hole diameter. For the CFRP, the circularity is found to be around 6 μm at low feed rates, when the feed is increased the circularity increases to 25 μm. The wear tests carried out show that, during first 30 holes, thrust force in CFRP undergoes a more important increase (90%) than thrust force of aluminium (6%).  相似文献   

6.
Carbon fiber reinforced polymers(CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix.Polycrystalline diamond(PCD) drills are commonly employed in CFRP drilling to satisfy hole quality conditions with an acceptable tool life.Drill geometry is known to be influential on the hole quality and productivity of the process.Considering the variety of CFRP laminates and available PCD drills on the market,selecting the suitable drill design and process parameters for the CFRP material being machined is usually performed through trial and error.In this study,machining performances of four different PCD drills are investigated.A mechanistic model of drilling is used to reveal trade-offs in drill designs and it is shown that it can be used to select suitable feed rate for a given CFRP drilling process.  相似文献   

7.
An experimental investigation has been carried out into the drilling of glass fibre reinforced plastics using HSS twist drills. A test series was conducted using a wide range of cutting conditions and drill geometry, namely cutting speed, feed rate, point angle and helix angle. Decisions relating to the ‘optimum’ drilling conditions were based on the geometrical accuracy and appearance of the produced holes. Drill wear was measured during the test trials and used as a further constraint in ‘optimum’ cutting conditions selection. Speed, feed rate and drill point angle were found statistically to be the most significant parameters influencing hole quality. Drill wear can be successfully correlated to the level of the thrust force. A simple nomogram is included to predict drill wear level from the thrust level or the amount of material removed.  相似文献   

8.
碳纤维增强复合材料(CFRP)传动轴因性能优越广泛应用于汽车、航空航天、船舶、冷却塔风机等轻量化领域,但其钻削过程中容易出现毛刺、分层等缺陷。为了揭示CFRP管面钻削缺陷形成机制,选择双锋角钻头和三尖二刃钻对CFRP管面钻孔,利用分步钻削盲孔和通孔的方法,分析了损伤部位的受力情况,揭示了入口撕裂、出口毛刺和分层产生原因。根据实验结果,发现双锋角钻头钻孔时入口撕裂损伤较大,损伤位置在钻头与管面接触最低点,且主要是那部分水平缠绕CFRP管的纤维,原因是水平缠绕的纤维屈曲变形最大,对切削力更加敏感。双锋角钻头和三尖二刃钻的横刃对孔最终出口分层没有影响,主切削刃的切削行为决定孔最终出口分层。相同钻头钻孔时,轴向力不是唯一影响分层因子的因素,还需考虑切削热。相比双锋角钻头,三尖二刃钻因锋利的外缘尖角能有效划断纤维,使出口分层较小。  相似文献   

9.
采用超细晶硬质合金钻头开展了芳纶纤维增强树脂基复合材料(Aramid Fiber Reinforce Polymer Composites,AFRP)的钻削实验,从钻削力、钻削温度、制孔质量、刀具磨损等方面对比分析了超细晶硬质合金钻头与普通硬质合金钻头的钻削性能。实验结果表明:芳纶纤维增强树脂基复合材料钻削过程中,钻削力随进给速度的增大而增大,随主轴转速的增大而减小,超细晶硬质合金钻头的钻削力比普通硬质合金钻头降低了40.6%以上;钻削温度随进给速度的增大而减小,随主轴转速的增大而增大,相对普通硬质合金钻头,采用超细晶硬质合金钻头的钻削温度降低了47~85℃;超细晶硬质合金钻头钻削产生的拉毛和热损伤明显少于普通硬质合金钻头;经过长时间的钻削,普通硬质合金钻头的橫刃和主切削刃出现了崩刃,后刀面出现了严重的磨料磨损;而超细晶硬质合金钻头由于高硬度和高耐磨性等特性,刀具的磨损相对较小,适合于芳纶纤维增强树脂基复合材料的高效低损伤加工。  相似文献   

10.
Exploiting very high speed digital videography, an in situ examination of the hole exit delamination at the bottom‐most ply during drilling holes in the selected woven CFRP epoxy laminates is presented. At the beginning, a rotating elastic bulge of the carbon fibers at the bottom‐ply, which is just the impression of the protruding drill chisel edge, was always observed. Following the elastic bulging, a few, initial cracks along the weak fiber/matrix interfaces appeared. Thereafter, tensile failures in the carbon fibers were seen. The exact location of the initiation of these fiber failures specifically depends on the actual drill‐hole position with respect to the woven configuration of the bottom‐ply. A visual model for the weak interstitial or undulated regions at the bottom‐ply is also proposed in this paper, showing the undulating fibers, which are susceptible to mostly tensile failures under the drilling loads. During a sub‐completion drilling‐phase at the bottom‐ply, various cracks were seen to be propagating mostly via linear paths. Also, the exit delamination at the bottom‐ply during a sub‐completion drilling‐phase was always observed as to be divided into various small, independent localized contours—each of which propagated almost independently through within several individual warps/wefts during drill‐feed. Also, the shape of each such tiny contour within a single warp/weft was identified as elliptic, which is observed around an entire drill‐hole in unidirectional (UD) composites as reported in literature. It was also observed that the overhanging cantilever‐like fibers at the bottom‐ply are really difficult to cut, once their base‐location or their exit delamination contour reaches outside the hole nominal diameter. Moreover, by referring to some very basic cutting angle configurations for the orthogonal trimming of UD‐composites as found rarely in archival literature, an illustrative model diagram is also proposed for the drilling of the selected laminate material. This idea is also approximately validated via a few visual observations. The proposed visual model is generally an attempt in correlating the observed peripheral hole quality (delamination) with various instantaneous tool/fiber engagement configurations occurring across the entire drill‐hole periphery at the bottom‐ply, during the very last drilling‐phase.  相似文献   

11.
Drilling results in damage such as delamination and matrix cracking around the hole and might ultimately causes degradation in the residual tensile strength of the drilled components. The damage induced during the drilling of composites can be detrimental to the mechanical behavior of the composite products. In this work, the effects of machining parameters (feed rate and cutting speed) and drill point angle on thrust force, the adjusted delamination factor and residual tensile strength are investigated. The Taguchi technique for the design of experiments was employed to analyze the thrust force, adjusted delamination factor and residual tensile strength of woven glass/resin epoxy. The results show that feed rate and drill point angle are the most important parameters. During tensile testing of drilled laminates, acoustic emission (AE) events were recorded. By feature extraction of AE time domain parameters, the suitable parameter for detecting the characteristics of thrust force and tensile force were determined. The AE mean power (MP) and cumulative count correlated well with thrust force and tensile force, respectively.  相似文献   

12.
Drilling holes in carbon fiber-reinforced polymer (CFRP) laminates are more prone to incur damage during machining. Surface damage could be considerably minimized through the adoption of cryogenic assisted machining. The economic and safety implications associated with cryogenic technology necessitate the exploration of alternate technologies. In this research work, the effects of cutting velocity (100, 125, and 150?m/min) and feed rate (0.03, 0.06, and 0.09?mm/rev) on thrust force, surface roughness, delamination, and acoustic emissions are studied during the drilling of CFRP laminates under chilled air environment and compared with dry drilling. The output parameters are found to be much influenced by feed rate than cutting velocity. Under high feed rate and cutting velocity, the delamination factor, surface roughness, and acoustic emissions are, respectively, reduced by 13.2, 10.5, and 7.4% for the drilling performed under chilled air environment over dry condition. About 9.9% increased thrust force is observed for chilled air-assisted drilling under the identical machining condition.  相似文献   

13.
In this paper is presented a new comprehensive approach to select cutting parameters for damage-free drilling in carbon fiber reinforced epoxy composite material. The approach is based on a combination of Taguchi’s techniques and on the analysis of variance (ANOVA). A plan of experiments, based on the techniques of Taguchi, was performed drilling with cutting parameters prefixed in an autoclave carbon fiber reinforced plastic (CFRP) laminate. The ANOVA is employed to investigate the cutting characteristics of CFRP’s using high speed steel (HSS) and Cemented Carbide (K10) drills. The objective was to establish a correlation between cutting velocity and feed rate with the delamination in a CFRP laminate. The correlation was obtained by multiple linear regression. Finally, confirmation tests were performed to make a comparison between the results foreseen from the mentioned correlation.  相似文献   

14.
Micro-drilling in carbon fiber reinforced plastic (CFRP) composite material is challenging because this material machining is difficult due to anisotropic, abrasive and non-homogeneous properties and also downscaling of cutting process parameters affect the cutting forces and micro-drilled hole quality extensively. In this work, experimental results based statistical analysis is applied to investigate feed and cutting speed effect on cutting force components and hole quality. Analysis of variance based regression equation is used to predict cutting forces and hole quality and their trend are described by response surface methodology. Results show that roundness error and delamination factor have similar trends to those of radial forces and thrust force, respectively. Non-linear trends of cutting forces and hole quality errors are observed during downscaling of the micro-drill feed value. Optimization results show that cutting forces and hole quality errors are minimum at a feed value which is almost equal to the tool edge radius rather than at the lowest feed value. Therefore, the presented results clearly show the influences of size effects on cutting forces and hole quality parameters in micro-drilling of CFRP composite material.  相似文献   

15.
The reinforced plastic materials have been widely used to manufacture several machine parts due to their lightweight and superior specific strength/modulus compared to the metallic materials. This paper investigates the use of Taguchi’s method in order to identify the best drilling setup of glass reinforced polyamide. Experimental study on PA6 and PA66GF30 composites was conducted using three carbide drills (K20) with different geometries. The effect of tool geometry, spindle speed and feed rate factors on the thrust force, hole mean diameter and circularity error were analyzed. The results revealed the quality of the holes can be improved by proper selection of cutting parameters.  相似文献   

16.
The paper outlines the various problems associated with the drilling of CFRP composites. The technique of dimensional analysis is used to investigate the complex correlation between thrust force, cutting speed, feed, hole diameter, point geometry and material thickness during the drilling of holes in CFRP composites, A new non-dimensional number (t/D), thickness of layered composites to drill diameter, is found to influence the thrust force. Four drill point geometries specifically found effective in drilling of FRP were tried and among them the eight facet drill point geometry was found to give the best results.  相似文献   

17.
Drilling of carbon fiber reinforced polymer (CFRP) is a challenging task in modern manufacturing sector and machining induced delamination is one of the major problems affecting assembly precision. In this work, a new three-dimensional (3D) finite element model is developed to study the chip formation and entrance delamination in drilling of CFRP composites on the microscopic level. Fiber phase, matrix phase and equivalent homogeneous phase in the multi-phase model have different constitutive behaviors, respectively. A comparative drilling test, in which the cement carbide drill and unidirectional CFRP laminate are employed, is conducted to validate the proposedmodel in terms of the delamination and the similar changing trend is obtained. Microscopic mechanism of entrance delamination together with the chip formation process at four special fiber cutting angles (0°, 45°, 90° and 135°) is investigated. Moreover, the peeling force is also predicted. The results show that the delamination occurrence and the chip formation are both strongly dependent on the fiber cutting angle. The length of entrance delamination rises with increasing fiber cutting angles. Negligible delamination at 0° is attributed to the compression by the minor flank face. For 45° and 90°, the delamination resulted from the mode III fracture. At 135°, serious delamination which is driven by the mode I and III fractures is more inclined to occur and the peeling force reaches its maximum. Such numerical models can help understand the mechanism of hole entrance delamination further and provide guidance for the damage-free drilling of CFRP.  相似文献   

18.
Drilling tool geometry evaluation for reinforced composite laminates   总被引:2,自引:0,他引:2  
In this work, a comparative study on different drill point geometries and feed rate for composite laminates drilling is presented. For this goal, thrust force monitoring during drilling, hole wall roughness measurement and delamination extension assessment after drilling is accomplished. Delamination is evaluated using enhanced radiography combined with a dedicated computational platform that integrates algorithms of image processing and analysis. An experimental procedure was planned and consequences were evaluated. Results show that a cautious combination of the factors involved, like drill tip geometry or feed rate, can promote the reduction of delamination damage.  相似文献   

19.
《Composites Part A》2007,38(1):61-70
This work investigates the effects of the drilling parameters, speed, and feed, on the required cutting forces and torques in drilling chopped composites with different fiber volume fractions. Three speeds, five feeds, and five fiber volume fractures are used in this study. The results show that feeds and fiber volumes have direct effects on thrust forces and torques. On the other hand, increasing the cutting speed reduces the associated thrust force and torque, especially at high feed values. Using multivariable linear regression analysis, empirical formulas that correlate favorably with the obtained results have been developed. These formulas would be useful in drilling chopped composites. The influence of cutting parameters on peel-up and push-out delaminations that occurs at drill entrance and drill exit respectively the specimen surfaces have been investigated. No clear effect of the cutting speed on the delamination size is observed, while the delamination size decreases with decreasing the feed. Delamination-free in drilling chopped composites with high fiber volume fraction remains as a problem to be further investigated.  相似文献   

20.
A review of mechanical drilling for composite laminates   总被引:8,自引:0,他引:8  
Composite laminates (CFRP, GFRP, and fiber metal composite laminates) are attractive for many applications (such as aerospace and aircraft structural components) due to their superior properties. Usually, mechanical drilling operation is an important final machining process for components made of composite laminates. However, composite laminates are regarded as hard-to-machine materials, which results in low drilling efficiency and undesirable drilling-induced delamination. Therefore, it is desirable to improve the cost-effectiveness of currently-available drilling processes and to develop more advanced drilling processes for composite laminates. Such improvement and development will benefit from a comprehensive literature review on drilling of composite laminates. This review paper summarizes an up-to-date progress in mechanical drilling of composite laminates reported in the literature. It covers drilling operations (including conventional drilling, grinding drilling, vibration-assisted twist drilling, and high speed drilling), drill bit geometry and materials, drilling-induced delamination and its suppressing approaches, thrust force, and tool wear. It is intended to help readers to obtain a comprehensive view on mechanical drilling of composite laminates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号