共查询到20条相似文献,搜索用时 31 毫秒
1.
《Acta Materialia》2000,48(12):3027-3038
2.
3.
《Acta Materialia》2002,50(6):1581-1586
Small-angle neutron scattering was performed on polycrystals of Ni–(46–49) at.% Ti quenched in ice water from the solid solution. The presence of small precipitates of a radius of about 1 nm was found for Ni–(46, 47 and 48) at.% Ti. Assuming a composition of Ni4Ti3 of the precipitates, their volume fraction varies from 7% to 0.3%. No precipitates are found if the Ti content is closer to stoichiometric NiTi. The formation of these precipitates already during quenching seems to suppress the formation of martensite. Ni–(47.9 and 48.5) at.% Ti were further aged for 1 h at 553 K, and small-angle scattering shows a fully established precipitate microstructure. The particles have a radius of about 1.5 nm and a mean interparticle distance of 4.8–5.8 nm. From the integrated small-angle scattering curves, a volume fraction of Ni4Ti3 particles of about 20% is obtained. 相似文献
4.
We present a simple Landau free energy functional for cubic-to-orthorhombic and cubic-to-monoclinic martensitic phase transformations. The functional is derived following group–subgroup relations between different martensitic phases – tetragonal, trigonal, orthorhombic and monoclinic – in order to fully capture the symmetry properties of the free energy of the austenite and martensite phases. The derived free energy functional is fitted to the elastic and thermodynamic properties of NiTi and NiTiCu shape memory alloys which exhibit cubic-to-monoclinic and cubic-to-orthorhombic martensitic phase transformations, respectively. 相似文献
5.
6.
Hanuš Seiner Jaromír Kopeček Petr Sedlák Lucie Bodnárová Michal Landa Pavel Sedmák Oleg Heczko 《Acta Materialia》2013,61(15):5869-5876
The morphology, microstructure and elastic softening in single crystals of Co–Ni–Al ferromagnetic shape memory alloy were studied to clarify the conditions for martenstic transformation in this alloy. We used two-phase (β matrix + γ particles) samples with different heat treatments, as-cast and annealed at temperatures from 1523 to 1623 K, and a sample of pure β (B2) phase. A complete set of elastic coefficients at room temperature and the temperature dependence of the softest shear coefficient (c′) of the Co38Ni33Al29 austenite was measured by a combination of pulse echo and resonant ultrasound spectroscopy in the range 208–398 K. All examined materials exhibit anomalous c′-softening for the whole temperature range except the interval 258– 328 K, in which a change in the slope appears. However, only annealed samples transformed to martensite. The change in the slope is ascribed to (i) magnetoelastic softening with the absence of a sharp Curie point; (ii) structural stiffening that prevents the martensitic transition in both the as-cast and single-phase alloys. No signature of the premartensite phenomenon was found. 相似文献
7.
《Intermetallics》2015
The precipitation of the P-phase in Ni–Ti–Pd and Ni–Ti–Pt shape memory alloys has been shown to dramatically increase the martensitic transformation temperature and strength in Ni-rich ternary alloys, yet little is known about the phase's compositional stability. Therefore, the compositional limits of the P-phase have been systematically studied by varying the Pd and Ni content while maintaining the general P-phase Ti11(Ni + Pd)13 stoichiometry. Each alloy was solutionized at 1050 °C followed by water quenching, and aging at 400 °C for 100 h. Four distinct phases were identified by electron and x-ray diffraction: Ti2Pd3, B2 NiTi, P- and P1-phases. The latter precipitate phases became more stable with increasing Ni at the expense of the Pd content. Atom probe tomography revealed the P-phase composition to be 45.8Ti–29.2Ni–25Pd (at.%) or Ti11(Ni7Pd6) as compared to the P1-phase 44.7Ti– 45.8Ni–9.4Pd (at.%) or Ti5Ni5Pd. 相似文献
8.
The influence of microstructure on mechanical properties and shape memory characteristics of Co–Ni–Ga high-temperature shape memory alloys were investigated in this study. X-ray diffraction, scanning electron microscopy and transmission electron microscopy were employed to detect the microstructures. We found that these alloys were composed of dual phases, a non-modulated tetragonal L10 martensite and a face-centered cubic (fcc) γ phase. The martensite was twinned and well self-accommodated. The γ phase was a Co-based solid solution with 30% lower hardness than martensite. Although the fracture mode was intergranular, the strength and plasticity of the alloys increased markedly with the increasing volume fraction of the γ phase. The presence of the γ phase in grain boundaries rather than in the martensite is favorable to shape memory recovery. This was revealed by the maximum shape recovery strain over 5.0% that was obtained in the Co46Ni25Ga29 alloy, with the γ phase formed mainly in grain boundaries. 相似文献
9.
《Scripta materialia》2004,50(2):243-248
New ZrCu-based high temperature shape memory alloys with Ms close to 500 K are under development. The shape memory behaviour of this material is compared to those of Ti–Ni–Zr and Ti–Ni–Hf alloys. The optimal compositions show a shape recovery of not less than 3% at temperatures above 470 K. 相似文献
10.
The effect of deformation via stress-induced martensitic transformation on the reverse transformation behavior of the (Ni47Ti44)100-xNbx (x=3, 9, 15, 20, 30, mole fraction, %) shape memory alloys was investigated in detail by differential scanning calorimetry (DSC) after performing cryogenic tensile tests at a temperature of Ms+30 ℃. The results show that Nb-content has obvious effect on the process of stress-induced martensitic transformation. It is also observed that the stress-induced martensite is stabilized relative to the thermally-induced martensite (TIM) formed on cooling, and Nb-content in Ni-Ti-Nb alloy has great influence on the reverse transformation start temperature and transformation temperature hysteresis of stress-induced martensite(SIM). The mechanism of wide transformation temperature hysteresis was fully explained based on the microscopic structure and the distribution of the elastic strain energy of (Ni47Ti44)100-xNbx alloys. 相似文献
11.
《稀有金属(英文版)》2015,(12)
In this work,the in situ optical observation was carried out in complete and incomplete transformation cycles of Ni-Ti alloys.In complete transformation cycles,initial martensite plates nucleate randomly in austenite.However,in a partial transformation cycle,the existing martensite plates have an influence on guiding the formation of subsequent martensite plates.And the randomness decreases with the decrease in transformation volume involved in the partial cycle.It is suggested that the randomness of transformations contributes to the introduction of defects,and the irreversibility associates with transformation randomness of martensite plates.For instance,a higher randomness in transformations could introduce more defects and more obvious irreversibility.On the other hand,defects generated in thermoelastic martensitic transformation are responsible for the hysteresis of transformations.Therefore,the randomness of transformations also contributes to the transformation hysteresis.These results could help further understanding on some martensitic transformation phenomena of shape memory alloys,such as the nonlinear and history-dependent characteristic. 相似文献
12.
R. Santamarta R. Arróyave J. Pons A. Evirgen I. Karaman H.E. Karaca R.D. Noebe 《Acta Materialia》2013,61(16):6191-6206
The precipitates formed after suitable thermal treatments in seven Ni-rich Ni–Ti–Hf and Ni–Ti–Zr high-temperature shape memory alloys have been investigated by conventional and high-resolution transmission electron microscopy. In both ternary systems, the precipitate coarsening kinetics become faster as the Ni and ternary element contents (Hf or Zr) of the bulk alloy are increased, in agreement with the precipitate composition measured by energy-dispersive X-ray microanalysis. The precipitate structure has been found to be the same in both Hf- and Zr-containing ternary alloys, and determined to be a superstructure of the B2 austenite phase, which arises from a recombination of the Hf/Zr and Ti atoms in their sublattice. Two different structural models for the precipitate phase were optimized using density functional theory methods. These calculations indicate that the energetics of the structure are not very sensitive to the atomic configuration of the Ti–Hf/Zr planes, thus significant configurational disorder due to entropic effects can be envisaged at high temperatures. The precipitates are fully coherent with the austenite B2 matrix; however, upon martensitic transformation, they lose some coherency with the B19′ matrix as a result of the transformation shear process in the surrounding matrix. The strain accommodation around the particles is much easier in the Ni–Ti–Zr-containing alloys than in the Ni–Ti–Hf system, which correlates well with the lower transformation strain and stiffness predicted for the Ni–Ti–Zr alloys. The B19′ martensite twinning modes observed in the studied Ni-rich ternary alloys are not changed by the new precipitated phase, being equivalent to those previously reported in Ni-poor ternary alloys. 相似文献
13.
14.
15.
《Acta Materialia》2008,56(13):3177-3186
Ni–Fe–Ga–Co is a promising system for magnetic shape memory alloy applications, due to its good ductility, mobile twin boundaries and high transformation temperatures. Unlike previous studies which focused on compositions with a Ga content of 27 at.%, here the martensitic transformation and magnetic properties over a large composition range of Ni54−xFe20Ga26Cox, Ni54−xFe19Ga27Cox, Ni56−xFe17Ga27Cox and Ni54−xFe18Ga28Cox (x = 0, 2, 4) are investigated. The martensitic transformation temperature Tm and the Curie temperature Tc can be tailored in a wide range by changing composition and heat treatment. A coupling of martensitic and magnetic transformations at ∼90 °C is found for Ni52Fe17Ga27Co4. Additionally, the effect of thermal cycling on the martensitic transformation of single- and two-phase Ni–Fe–Ga–Co alloys is discussed. Furthermore, an intermediate face-centered cubic phase induced by powderization and transformed into a body-centered cubic phase by aging is reported. The saturation magnetization is significantly decreased by powderization, while recovered by the subsequent aging. 相似文献
16.
《稀有金属(英文版)》2017,(6)
The tribological behaviour of Ti–30Zr, Ti–20Zr–10Nb and Ti–19Zr–10Nb–1Fe alloys was investigated using reciprocating friction and wear tests. X-ray diffraction(XRD) results indicate that Ti–30Zr, Ti–20Zr–10Nb and Ti–19Zr–10Nb–1Fe alloys are composed of hexagonal a'-martensite, orthorhombic a'-martensite and bcc β phases,respectively. Ti–30Zr alloy has the highest hardness of HV(273.1 ± 9.3), while Ti–20Zr–10Nb alloy exhibits the lowest hardness of HV(235.2 ± 20.4) among all the alloys.The tribological results indicate that Ti–30Zr alloy shows the best wear resistance among these alloys, corresponding to the minimum average friction coefficient of 0.052 and the lowest wear rate of 6.4x10~(-4)mm3·N~(-1)·m~(-1). Ti–20Zr–10Nb alloy displays better wear resistance than Ti–19Zr–10Nb–1Fe alloy, because the iron oxide is easy to fall off and less Nb_2O_5 films form on the worn surface of the latter.Delamination and abrasive wear in association with adhesive wear are the main wear mechanism of these alloys. 相似文献
17.
《中国有色金属学会会刊》2020,30(3):688-700
As a β stabilizing element in Ti-based alloys, the effect of Mo on phase constitution, microstructure, mechanical and shape memory properties was investigated. Different compositions of Ti–xMo–3Sn alloys (where x=2, 4, 6, at.%) were prepared by arc melting. A binary composition of Ti–6Mo alloy was also prepared for comparison. Ti–xMo–3Sn alloys show low hardness and high ductility with 90% reduction in thickness while Ti–6Mo alloy shows high hardness, brittle behavior, and poor ductility. Field emission scanning electron microscopy (FESEM) reveals round morphology of athermal ω (ωath) precipitates. The presence of ωath phase is also confirmed by X-ray diffraction (XRD) in both as-cast and solution-treated and quenched conditions. The optical microscopy (OM) and FESEM show that the amount of martensite forming during quenching decreases with an increase in Mo content, which is also due to β→ω transformation. The hardness trends reinforce the presence of ωath too. The shape memory effect (SME) of 9% is the highest for Ti–6Mo–3Sn alloy. The SME is trivial due to ωath phase formation; however, the increase in SME is observed with an increase in Mo content, which is due to the reverse transformation from ωath and the stress-induced martensitic transformation. In addition, a new and very simple method was designed and used for shape memory effect measurement. 相似文献
18.
Transformation behavior, microstructures and shape memory characteristics of Ti−(50−X)Ni−XSi (X=2, 4, 6 at.%) and (50−X)Ti−Ni−XSi
(X=2, 5, 7, 10 at.%) alloys were investigated by means of scanning electron microscopy, transmission electron microscopy,
X-ray diffraction, differential scanning calorimetry, electrical resistivity measurements and constant load thermal cycling
tests. Ti5Si3, Ni16Ti6Si7 and Ni4Ti4Si7 were formed in Ti−(50−X)Ni−XSi alloys, while Ti5Si4, Ni3Si, Ni3Ti2 and Ni3Ti2Si were found in (50−X)Ti−Ni−XSi alloys. The total amount of silicides increased with increasing Si content, irrespective
of Si content. The B2→B19 transformation occurred in Ti−(50−X)Ni−XSi alloys, and their transformation temperatures appeared
to be almost constant. Transformation elongation associated with the B2→B19 transformation decreased with increasing Si content.
In contrast to Ti−(50−X)Ni−XSi alloys, a transformation accompanied with structural change did not occur in (50−X)Ti−Ni−XSi
alloys. 相似文献
19.
《Intermetallics》2014
A series of Ni50−xCoxMn32Al18 (x = 3, 4, 5, 6, 7, and 8) alloys were prepared by the arc melting method. The martensitic transformation (MT) shifts to a lower temperature with increasing Co concentration and can be tuned to occur from a ferromagnetic austenite to a weak-magnetic martensite in the range of 6 ≤ x ≤ 8. The field-induced metamagnetic behavior was realized in Ni42Co8Mn32Al18 sample in which a large magnetic entropy change of 7.7 J/kg K and an effective refrigerant capacity value of 112 J/kg were obtained under the field of 60 kOe. The large magnetocaloric effect and adjustable MT temperature suggest that Ni–Co–Mn–Al alloys should have promising potential as magnetic refrigerants. 相似文献
20.
P. Gargarella S. Pauly K.K. Song J. Hu N.S. Barekar M. Samadi Khoshkhoo A. Teresiak H. Wendrock U. Kühn C. Ruffing E. Kerscher J. Eckert 《Acta Materialia》2013,61(1):151-162
New Ti–Cu–Ni shape memory bulk metallic glass composites were obtained by carefully controlling the cooling rate upon quenching. This allows for the formation of a metastable microstructure consisting mainly of ductile, spherical martensitic Ti(Ni,Cu) precipitates embedded in an amorphous matrix also containing a small volume fraction of TiCu and Ti2Cu precipitates. These composites exhibit large ductility and high strength combined with a strong work-hardening behaviour. A deformation mechanism is proposed with the help of experimental observations and finite-element simulation. The simulation results demonstrate that stress concentrations occur around the precipitates, which promotes a heterogeneous stress distribution and the formation of multiple shear bands. Additionally, different transformation temperatures were observed for martensitic precipitates depending on whether they are completely or partially embedded in the amorphous matrix. 相似文献