首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental study was conducted to improve the electrical conductivity of continuous carbon fibre/epoxy (CF/EP) composite laminate, with simultaneous improvement in mechanical performance, by incorporating nano-scale carbon black (CB) particles and copper chloride (CC) electrolyte into the epoxy matrix. CF/EP laminates of 65 vol.% of carbon fibres were manufactured using a vacuum-assisted resin infusion (VARI) technique. The effects of CB and the synergy of CB/CC on electrical resistivity, tensile strength and elastic modulus and fracture toughness (KIC) of the epoxy matrix were experimentally characterised, as well as the transverse tensile modulus and strength, Mode I and Mode II interlaminar fracture toughness of the CF/EP laminates. The results showed that the addition of up to 3.0 wt.% CB in the epoxy matrix, with the assistance of CC, noticeably improved the electrical conductivity of the epoxy and the CF/EP laminates, with mechanical performance also enhanced to a certain extent.  相似文献   

2.
谢波涛  高亮  江帅  李梦军 《复合材料学报》2020,37(11):2798-2806
采用试验和数值方法研究了含孔玻璃纤维/环氧树脂(GF/EP)复合材料-铝合金层板在不同热暴露温度下的拉伸剩余强度和损伤失效模式,揭示了层间损伤、纤维损伤及基体损伤的演化过程。结果表明:随着热暴露温度升高,含孔GF/EP复合材料-铝合金层板剩余强度不断下降,拉伸破坏呈现出明显的纤维断裂与层间分层混合失效模式。热暴露温度越高或开孔直径越大,GF/EP复合材料-铝合金层板的层间分层损伤区域越小。随着载荷的增大,沿加载方向的0°纤维和基体的损伤分别呈现出类似“漏斗”形和“花瓣”状的损伤演化形式,而层间损伤区域呈现出一对相对开孔对称的三角形损伤演化形式。基于GF/EP复合材料-铝合金层板的剩余强度和损伤失效模式的数值仿真与试验结果吻合较好。   相似文献   

3.
采用真空辅助成型工艺(VARI)制备了四种无纺布(聚酰胺(PA)、聚氨酯弹性体橡胶(TPU)、乙烯-醋酸乙烯共聚物(EVA)、共聚酯(PEs))层间改性的玻璃纤维/环氧乙烯基酯树脂(GF/EVER)复合材料层合板.在温度为20℃下进行落锤冲击实验,对比分析了不同层间改性的GF/EVER复合材料层合板的低速冲击响应特性和...  相似文献   

4.
Self-sensing of damage by measurement of the DC electrical resistance or potential away from the damaged region was demonstrated in quasi-isotropic continuous carbon fiber epoxy-matrix composite laminates under impact at energy up to 5 J. The through-thickness potential was substantial up to 240– 480 mm (at 0.25–99 mA correspondingly) in the longitudinal direction from the position of through-thickness current application, due to current spreading in the longitudinal direction. A model for the current spreading is provided. The fractional change in resistance resulting from damage decreased with increasing distance from the point of impact (diameter of indentation up to 3.5 mm and depth of indentation up to 0.16 mm), such that it was non-zero even at a distance of 150 mm from the point of impact. Both the through-thickness resistance and the oblique resistance were effective indicators. The ability for the resistance measured away from the damaged region to indicate damage in the damaged region is due to the much lower electrical resistivity in the longitudinal than through-thickness or oblique directions in the composite.  相似文献   

5.
Review of z-pinned composite laminates   总被引:4,自引:0,他引:4  
A.P. Mouritz   《Composites Part A》2007,38(12):2383-2397
This paper reviews published research into polymer composite laminates reinforced in the through-thickness direction with z-pins. Research into the manufacture, microstructure, delamination resistance, damage tolerance, joint strength and mechanical properties of z-pinned composites is described. Benefits of reinforcing composites with z-pins are assessed, including improvements to the delamination toughness, impact damage resistance, post-impact damage tolerance and through-thickness properties. Improvements to the failure strength of bonded and bearing joints due to z-pinning are also examined. The paper also reviews research into the adverse effects of z-pins on the in-plane mechanical properties, which includes reduced elastic modulus, strength and fatigue performance. Mechanisms responsible for the reduction to the in-plane properties are discussed, and techniques to minimise the adverse effect of z-pins are described. The benefits and drawbacks of z-pinning on the interlaminar toughness, damage tolerance and in-plane mechanical properties are compared against other common types of through-thickness reinforcement for composites, such as 3D weaving and stitching. Gaps in our understanding and unresolved research problems with z-pinned composites are identified to provide a road map for future research into these materials.  相似文献   

6.
纤维增强树脂基复合材料具有轻质高强的特点,但复合材料层合板层间韧性和抗冲击性能差,复合材料微细杆(Z-pin)增强技术极大地改善了这一不足,被广泛应用于各工业制造领域。近年来,Z-pin增强复合材料的制备工艺不断发展,目前主要有热压罐法和超声植入法(UAZ)。Z-pin增强复合材料的层间增韧和抗冲击性能提高效果显著,但其面内拉伸性能、面内压缩性能和疲劳性能稍有下降。文中从Z-pin增强复合材料的性能特点出发,针对其层间韧性、抗冲击性、面内力学性能和疲劳性能进行了综述。指出Z-pin在Ⅰ型断裂模式、Ⅱ型断裂模式和混合断裂模式下的增韧机制;总结了Z-pin在提高复合材料低能量冲击后剩余压缩性能方面的作用;介绍了Z-pin增强复合材料在平面拉伸和压缩载荷下的破坏模式,从纤维损伤角度归纳了其面内拉伸及压缩性能下降的原因;总结了Z-pin增强复合材料在循环压缩载荷下的破坏模式。最后从材料体系和工艺优化两方面出发,为降低纤维损伤提供了建议。对Z-pin增强技术的进一步应用进行了展望。  相似文献   

7.
基于连续介质损伤力学(CDM)方法,建立了分析复合材料层合板低速冲击问题的三维数值模型。该模型考虑了层内损伤(纤维和基体损伤)、层间分层损伤和剪切非线性行为,采用最大应变失效准则预测纤维损伤的萌生,双线性损伤本构模型表征纤维损伤演化,基于物理失效机制的三维Puck准则判断基体损伤的起始,根据断裂面内等效应变建立混合模式下基体损伤扩展准则。横向基体拉伸强度和面内剪切强度采用基于断裂力学假设的就地强度(in-situ strength)。纤维和基体损伤本构关系中引入单元特征长度,有效降低模型对网格密度的依赖性。层间分层损伤情况由内聚力单元(cohesive element)预测,以二次应力准则为分层损伤的起始准则,B-K准则表征分层损伤演化。分别通过数值分析方法和试验研究方法对复合材料典型铺层层合板四级能量低速冲击下的冲击损伤和冲击响应规律进行分析,数值计算和试验测量的接触力-时间曲线、分层损伤的形状和面积较好吻合,表明该模型能够准确地预测层合板低速冲击损伤和冲击响应。  相似文献   

8.
The transverse tensile properties, interlaminar shear strength (ILSS) and mode I and mode II interlaminar fracture toughness of carbon fibre/epoxy (CF/EP) laminates with 10 wt% and 20 wt% silica nanoparticles in matrix were investigated, and the influences of silica nanoparticle on those properties of CF/EP laminates were characterized. The transverse tensile properties and mode I interlaminar fracture toughness (GIC) increased with an increase in nanosilica concentration in the matrix resins. However, ILSS and the mode II interlaminar fracture toughness (GIIC) decreased with increasing nanosilica concentration, especially for the higher nanosilica concentration (20 wt%). The reduced GIIC value is attributed to two main competing mechanisms; one is the formation of zipper-like pattern associated with matrix microcracks aligned 45° ahead of the crack tip, while the other is the shear failure of matrix. The ratio of GIIC/GIC decreased with the concentration of silica nanoparticles, comparable with similar CF/EP laminates with dispersed CNTs in matrix. Fractographic studies showed that interfacial failure between carbon fibre and epoxy resin occurred in the neat epoxy laminate, whereas a combination of interfacial failure and matrix failure occurred in the nanosilica-modified epoxy laminates, especially those with a higher nanosilica concentration (20 wt%).  相似文献   

9.
The electrical behavior of continuous carbon fiber epoxy-matrix composites in the through-thickness direction was studied by measuring the contact electrical resistivity (DC) of the interlaminar interface in the through-thickness direction. The contact resistivity was found to decrease with increasing curing pressure and to be higher for unidirectional than crossply composites. The lower the contact resistivity, the greater was the extent of direct contact between fibers of adjacent laminae. The activation energy for electrical conduction in the through-thickness direction was found to increase with increasing curing pressure and to be lower for unidirectional than crossply composites. The higher the activation energy, the greater was the residual interlaminar stress. Apparent negative electrical resistance was observed, quantified, and controlled through composite engineering. Its mechanism involves electrons traveling in the unexpected direction relative to the applied voltage gradient, due to backflow across a composite interface. The observation was made in the through-thickness direction of a continuous carbon fiber epoxy-matrix two-lamina composite, such that the fibers in the adjacent laminae were not in the same direction and that the curing pressure during composite fabrication was unusually high (1.4 MPa).  相似文献   

10.
复合材料开口缝合补强试验及模拟   总被引:1,自引:0,他引:1  
缝纫能够明显改善层合板的层间力学性能,但缝纫的引入造成了层合板面内的损伤,导致了面内性能的下降.开口的损伤也主要是由孔边的层间失效引发的,开口缝合补强的引入,可以改善孔边的层间力学性能.本文对缝合补强前后开口层合板的静力学拉伸性能进行了试验和有限元的模拟,发现补强后层合板的面内力学性能并没有明显的降低.  相似文献   

11.
Drop impact damage of continuous carbon fiber epoxy–matrix composite laminates, was studied by electrical resistance measurement, which was shown to be more sensitive than the ultrasonic method. The oblique resistance at an angle between the longitudinal and through-thickness directions was more effective than the surface longitudinal resistance in indicating damage, particularly interior damage. The oblique resistance values from longitudinal segments of a specimen were not additive, but the surface resistance values were. In the case of a unidirectional composite, electrical contacts at 45° from the longitudinal direction in the plane of the laminate were more effective than those at 90°. Even minor damage associated with negligible indentation was sensed. The spatial distribution of damage was also studied.  相似文献   

12.
This paper concerns a study of the combined effects of curing conditions and environmental exposure on the ultimate properties of two commercial woven carbon/epoxy laminates. Curing parameters (heating rate and applied pressure) were varied so as to obtain six different conditions for each material. Moisture saturation was also achieved by exposing some of the cured samples to environmental conditions of 70°C and 95% relative humidity. Four different tests (tensile, impact, Mode I and Mode II interlaminar fracture resistance) were therefore performed, and the results obtained on the different materials before and after moisture saturation compared. Neither curing pressure nor heating rate nor moisture absorption were observed to have any practical effect on tensile and impact properties. On the contrary, one noticeable effect was the interlaminar fracture resistance of the laminates. The results are discussed and interpreted in terms of damage formation and stress intensification mechanisms.  相似文献   

13.
The steady-state and transient behavior of laminated hygrothermopiezoelectric plates is studied under the coupled effects of mechanical, electrical, thermal, and moisture fields. A three-dimensional discrete-layer model is developed for analyzing rectangular multilayered laminated plates with various types of boundary condition. Excitations on the laminates are specified as surface traction, electric potential, temperature, and/or moisture concentration on top, interlaminar, and bottom surfaces. The discrete-layer model employs one-dimensional finite-element approximations in the through-thickness direction and two-dimensional in-plane analytical functions (e.g., trigonometric and polynomial functions). The transient problem is formulated in a standard matrix form and then solved by direct step-by-step integration using the Newmark beta method. Numerical examples are demonstrated for problems of simply supported conditions and for hygrothermal diffusion in an infinite plate. The discrete-layer model is verified by comparing with available exact solutions, and also some new results are presented.  相似文献   

14.
The effects of the content and position of shape memory alloy (SMA) wires on the mechanical properties and interlaminar fracture toughness of glass‐fiber‐reinforced epoxy (GF/epoxy) composite laminates are investigated. For this purpose, varying numbers of SMA wires are embedded in GF/epoxy composite laminates in different stacking sequences. The specimens are prepared by vacuum‐assisted resin infusion (VARI) processing and are subjected to static tensile and three‐point‐bending tests. The results show that specimens with two SMA wires in the stacking sequence of [GF2/SMA/GF1/SMA/GF2] and four SMA wires in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] exhibit optimal performance. The flexural strength of the optimal four‐SMA‐wire composite is lower than that of the pure GF/epoxy composite by 5.76% on average, and the flexural modulus is improved by 5.19%. Mode‐I and II interlaminar fracture toughness tests using the SMA/GF/epoxy composite laminates in the stacking sequence of [GF4/SMA/GF2/SMA/GF4] are conducted to evaluate the mechanism responsible for decreasing the mechanical properties. Scanning electron microscopy (SEM) observations reveal that the main damage modes are matrix delamination, interfacial debonding, and fiber pullout.
  相似文献   

15.
选用微胶囊作为改性材料,采用热压机层压成型工艺制备出微胶囊层间增韧T300碳纤维/环氧树脂(CF/EP)复合材料。通过双悬臂梁(DCB)Ⅰ型层间断裂试验评估了CF/EP复合材料的增韧效果。利用超声导波技术对普通CF/EP复合材料和增韧CF/EP复合材料层间力学性能进行评价。通过SEM对CF/EP复合材料层间断面微观形貌进行观察,以揭示微胶囊的增韧机制,同时对超声导波检测结果进行辅助说明。结果表明,微胶囊以团聚形式分布在层间基体中,可以有效提高CF/EP复合材料的层间断裂韧性。微胶囊的填充改变了CF/EP复合材料层间基体特性,增加了导波传播过程中的衰减,导致响应信号峰值降低。同时,团聚的微胶囊改变了CF/EP复合材料对于中心频率125 kHz五峰波激励的振动响应,导致中心频率在信号频谱中的幅值低于普通CF/EP复合材料。   相似文献   

16.
The experimental study of fastener pull-through failure in composite laminates reported in Part 1 of this paper found pull-through failure to be characterised by substantial internal damage similar to that observed for low-velocity impacted composite panels. Damage is manifested in the form of a conically distributed network of matrix cracking and delaminations extending through-the-thickness from the fastener head outer edge, directed away from the fastener hole. Analysis is conducted in this paper to identify the mechanisms responsible for failure. Finite element analysis indicated high shear stresses at the fastener head outer edge to be responsible for the matrix cracking in this region. Tensile in-plane stresses are the cause of flexural failures found elsewhere in laminates of reduced bending stiffness. Fastener pull-through failure results from the tensile strength of the resin being exceeded. Matrix cracking was found to be the initial mode of failure with cracks aligning themselves perpendicular to the direction of principal stresses. Interply delamination is a secondary mode of failure and represents a propagation of cracking along the path of least resistance. Delaminations are induced due to excessive interlaminar shear and peel strains in the laminate due to through-thickness deformation and matrix cracking respectively. A numerical procedure for the prediction of failure was developed based upon a progressive damage model and a maximum principal strain criterion. Very good correlation between experimental and predicted pull-through failure loads, failure location and failure sequence were achieved. This research constitutes work performed as part of the Cooperative Research Centre for Advanced Composite Structures (CRC-ACS) task on highly loaded joints.  相似文献   

17.
以高强高模聚酰亚胺(PI)纤维为增强体,以航空级环氧树脂(EP)为基体,通过热熔法制备预浸料并采用热压罐成型技术制备了PI/EP复合材料层合板,对其力学性能和破坏形貌进行了分析。结果表明:高强高模PI纤维与EP具有良好的界面结合力,PI/EP复合材料的层间剪切强度为65.2 MPa,面内剪切强度为68.6 MPa;良好的界面结合状态能充分发挥PI纤维优异的力学性能,PI/EP复合材料的纵向拉伸强度达1 835 MPa,弯曲强度为834 MPa;PI/EP复合材料纵向拉伸破坏模式为散丝爆炸破坏,同时由于高强高模PI纤维还具有优异的韧性和较高的断裂伸长率,PI/EP复合材料从受力到失效断裂的时间较长;PI/EP复合材料纵向压缩破坏模式为45°折曲带破坏。高强高模PI/EP复合材料为航空航天先进复合材料增加了一个全新的选材方案。   相似文献   

18.
A comparison of substantial published data for 3D woven, stitched and pinned composites quantifies the advantages and disadvantages of these different types of through-thickness reinforcement for in-plane mechanical properties. Stitching or 3D weaving can either improve or degrade the tension, compression, flexure and interlaminar shear properties, usually by less than 20%. Furthermore, the property changes are not strongly influenced by the volume content or diameter of the through-thickness reinforcement for these two processes. One implication of this result is that high levels of through-thickness reinforcement can be incorporated where needed to achieve high impact damage resistance. In contrast, pinning always degrades in-plane properties and fatigue performance, to a degree that increases monotonically with the volume content and diameter of the pins. Property trends are interpreted where possible in terms of known failure mechanisms and expectations from modelling. Some major gaps in data and mechanistic understanding are identified, with specific suggestions for new standards for recording data and new types of experiments.  相似文献   

19.
通过溶液混合法制备了凹凸棒(ATT)/炭黑(CB)/环氧树脂(EP)复合材料。使用紫外可见光光谱仪(UV-Vis)和Zeta电位测试仪对CB和(或)ATT在丙酮溶剂中的分散稳定性进行了研究。使用扫描电子显微镜(SEM)和电阻仪分别研究了不同填料比例以及含量对EP复合材料微观结构和电阻率的影响。结果表明,ATT的加入可以有效增强CB在溶剂中的分散稳定性并促进EP基体中导电网络的形成。当CB与ATT质量比为5∶1时,复合材料的电阻率比不添加ATT时下降了2个数量级;其渗流阈值(1%)(质量分数,下同)小于具有相同填料含量的CB/EP复合材料(1.8%)。最后探讨了ATT对CB/EP复合材料电性能影响的可能机理。  相似文献   

20.
针对玻璃纤维增强聚合物(GFRP)复合材料作为火电烟囱内衬的服役老化问题,以玻璃纤维/环氧树脂(GF/EP)复合材料为研究对象,用正交试验法研究温度、偶联剂含量和热流老化时间等因素对GF/EP复合材料热损伤后的质量损失率、弯曲强度和剪切性能的影响。采用金相显微图像处理法测量计算GF/EP复合材料的孔隙率,使用自主设计并搭建的原位在线监测系统对GF/EP复合材料进行测试。结果表明,不同因素对GF/EP复合材料性能的影响程度不同。偶联剂含量的增加会有限改善GF/EP复合材料的质量损失率,而温度因素对复合材料弯曲强度的影响较大,复合材料本身存在的后固化行为会影响弯曲性能的变化趋势,随温度升高弯曲强度总体下降了11.8%。GF/EP复合材料的层间剪切强度与热老化时间密切相关,16 h相比8 h热流老化后的层间剪切强度均值提高了10.2%。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号