首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric composites with high thermal conductivity, high dielectric permittivity but low dissipation factor have wide important applications in electronic and electrical industry. In this study, three phases composites consisting of poly(vinylidene fluoride) (PVDF), Al nanoparticles and β-silicon carbide whiskers (β-SiCw) were prepared. The thermal conductivity, morphological and dielectric properties of the composites were investigated. The results indicate that the addition of 12 vol% β-SiCw not only improves the thermal conductivity of Al/PVDF from 1.57 to 2.1 W/m K, but also remarkably increases the dielectric constant from 46 to 330 at 100 Hz, whereas the dielectric loss of the composites still remain at relatively low levels similar to that of Al/PVDF at a wider frequency range from 10−1 Hz to 107 Hz. With further increasing the β-SiCw loading to 20 vol%, the thermal conductivity and dielectric constant of the composites continue to increase, whereas both the dielectric loss and conductivity also rise rapidly.  相似文献   

2.
Graphene with polydopamine (PDA) coating layer which displays promoted dispersibility in organic solvent was prepared through self-polymerization of dopamine onto graphene oxide (GO) and subsequent chemical reduction. The PDA coated reduced GO (RDGO) is homogeneously incorporated into poly(vinylidene fluoride) (PVDF) matrix, which exhibit a percolation threshold at 0.643 wt%. The dielectric constant of PVDF with 0.70 wt% RDGO increases to 176, about 17 times of neat PVDF. Importantly, the loss tangent is suppressed to 0.337 due to reduction of the concentration and mobility of ionizable carboxylic groups by PDA. The enhancement of dielectric constant probably rises from duplex interfacial polarization induced by graphene–semiconductor interface, and semiconductor–insulator interface. The composites displays advantages in excellent dielectric properties and good flexibility and processability guaranteed by low loading of RDGO, which is suitable for the development of dielectric materials for energy storage.  相似文献   

3.
A polymer composite with high dielectric permittivity was prepared by embedding silicon carbide (SiC) whisker with an average diameter of 500 nm–1 μm in poly(vinylidene fluoride) (PVDF). However, the high dielectric loss and electrical conductivity of the two-phase composite prohibits its potential applications. Barium titanate (BT) particles with average diameter of 100 nm and 1 μm were incorporated as a third phase to fabricate a three-phase composite. The morphology structure, dielectric and electrical properties before and after the addition of BT particles were investigated. The three-phase composite exhibits largely suppressed dielectric loss and electrical conductivity without sacrificing the high dielectric permittivity, which was extremely hard to be realized for two-phase composite. It is also found that the nano-size BT is more favorable in achieving high dielectric permittivity than the micro-size BT, where their dielectric loss and electrical conductivity are similar. Furthermore, electric modulus analysis confirms the largely suppressed electron conduction process which results in the enhanced dielectric and electrical properties in three-phase composite.  相似文献   

4.
Weak interfacial bonding between carbon materials and polymer matrix impedes the formation of homogeneous composites, challenging to the enhancement of dielectric properties of such systems. In this work, we designed novel carbonized polyacrylonitrile/polyethylene glycol copolymer fibers (CPCFs) and then used them as fillers to enhance the dielectric properties of poly(vinylidene fluoride) (PVDF)-based composites. These CPCFs are rich in nitrogen (8.55%) and oxygen (3.94%) atoms on the surface of them. The results of molecular dynamic (MD) simulations indicate that the existence of these atoms significantly increase the interaction energy between CPCFs and PVDF matrix from −45.13 kcal/mol to −62.22 kcal/mol, which promotes the intercalation of conductive CPCFs into insulated PVDF matrix to form ultrathin microcapacitors. As a result, the largest dielectric constant of CPCFs/PVDF composites can reach 1583 (1 kHz), which is about 150 times higher than that of pure PVDF.  相似文献   

5.
In this paper, we report a unique method to develop polyvinylidene fluoride (PVDF) composites with high dielectric constant and low loss tangent by loading relatively low content of graphene-encapsulated barium titanate (BT) hybrid fillers. BT particles encapsulated with graphene oxide (BT-GO) were prepared via electrostatic self-assembly and subsequent chemical reduction resulted in BT-RGO particles. SEM morphology revealed that RGO sheets were segregated by BT particles. The hybrid fillers have two advantages for tuning dielectric properties: loading extremely low content of RGO can be exactly controlled and individual RGO sheets segregated by BT particles would prevent leakage current. As a result, PVDF composites filled with BT-RGO displayed improved dielectric properties before percolative behavior occurred. Composites filled with 30 vol% BT-RGO have a dielectric constant and loss tangent (tan δ) value of 67.5 and 0.060 (1 kHz), respectively. By contrast, dielectric constant and tan δ of composites filled with 30 vol% BT-GO and BT were 57.7 and 38.3, 0.076 and 0.042 (1 kHz), respectively. The improvement of dielectric constant is attributable to the formation of microcapacitors by highly conductive RGO sheets segregated by BT particles. Meanwhile, the distance between adjacent RGO sheets is large enough to prevent leakage current from tunneling conductance, by which tan δ is remarkably constrained. The composites could achieve excellent dielectric properties by loading relatively low amount of ceramic fillers, which indicates that this method can be used as guideline for reduce the usage amount of ceramic fillers.  相似文献   

6.
Novel all-organic polymer high-dielectric permittivity composites of polyaniline (PANI)/poly (vinylidene fluoride) (PVDF) were prepared by solution method and their dielectric and electric properties were studied over the wide ranges of temperatures and frequencies. To improve the interface bonding between two polymers, dodecylbenzenesulfonic acid (DBSA), a bulky molecule containing a polar head and a long non-polar chain was used both as a surfactant and as dopant in polyaniline (PANI) synthesis. Synthesized conducting PANI–DBSA particles were dispersed in poly(vinylidene fluoride) (PVDF) matrix to form an all-organic composite with different PANI–DBSA concentrations. Near the percolation threshold, the dielectric permittivity of the composites at 100 Hz frequency and room temperature was as high as 170, while the dielectric loss tangent value was as low as 0.9. Like typical percolation system, composites experienced high dielectric permittivity at low filler concentrations. However, their dielectric loss tangent was low enough to match with non-percolative ceramic filler-based polymer composites. Maximum electrical conductivity at 24 wt% of PANI–DBSA was mere 10?6 S/cm, a remarkably low value for percolative-type composites. Increase in the dielectric permittivity of the composites with increase in temperature from 25 to 115 °C for different PANI–DBSA concentrations was always in the same range of 50–60 %. However, the degree of increase in the electrical conductivity with the temperature was more prominent at low filler concentrations compared with high filler concentrations. Distinct electrical and their unique thermal dependence were attributed to an improved interface between the filler and the polymer matrix.  相似文献   

7.
Polycrystalline MgCuZn ferrites with chemical formula Mg0.50-xCuxZn0.50Fe2O4 (x = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30) were prepared by microwave sintering method. These powders were calcined, compacted and sintered at 950 °C for 30 min. Structural, microstructural and elemental analyses were carried out using X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectrometry (EDS), respectively. The lattice parameter is found to increase with increasing copper content. A remarkable densification is observed with the addition of Cu ions in the ferrites. The sintered ferrite was characterized for initial permeability, dielectric constant and dielectric loss tangent and ac conductivity measurements. The temperature variation of the initial permeability of these samples was carried out from 30 °C to 200 °C. The dielectric constant, dielectric loss tangent and ac conductivity have been measured in the frequency range of 100 Hz to 1 MHz. Initial permeability and dielectric constant were found to increase and dielectric loss decreased with Cu substitution for Mg, up to x = 0.20. The ferrite powder prepared is suitable for the application in multilayer chip inductor due to its low-temperature sinterability, good magnetic properties and low loss at high frequency.  相似文献   

8.
Continuous SiNO fiber-reinforced boron nitride (SiNOf/BN) composites for high-temperature wave transparency have been fabricated by a precursor infiltration pyrolysis (PIP) process using borazine as the BN precursor. The evolution of the properties of the composites at elevated temperatures have been measured in terms of strength, dielectric constant, and loss tangent, and the associated structure evolution has been investigated by XRD, SEM, HRTEM, and FTIR. A flexural strength of 138 MPa was maintained up to 1200 °C. Deterioration of the mechanical properties at elevated temperature was due to crystallization of the amorphous SiNO fibers into Si2N2O and internal pore formation, coupled with interface reactions. The composites display a low dielectric constant of 3.38 and a low loss tangent of 0.0017, which increases slightly with temperature due in part to the crystallization into Si2N2O and high-temperature polarization. The high-temperature mechanical properties and good dielectric properties of these composites make them useful for wave transparency.  相似文献   

9.
Si3N4 particle reinforced silica aerogel composites have been fabricated by the sol–gel method via ambient pressure drying. The microstructure and mechanical, thermal insulation and dielectric properties of the composites were investigated. The effect of the Si3N4 content on the microstructure and properties were also clarified. The results indicate that the obtained mesoporous composites exhibit low thermal conductivity (0.024–0.072 Wm 1 K 1), low dielectric constant (1.55–1.85) and low loss tangent (0.005–0.007). As the Si3N4 content increased from 5 to 20 vol.%, the compressive strength and the flexural strength of the composites increased from 3.21 to 12.05 MPa and from 0.36 to 2.45 MPa, respectively. The obtained composites exhibit considerable promise in wave transparency and thermal insulation functional integration applications.  相似文献   

10.
Polydimethylsiloxane (PDMS) hybrid composites consisting of exfoliated graphite nanoplatelets (xGnPs) and multiwalled carbon nanotubes functionalized with hydroxyl groups (MWCNTs-OH) were fabricated, and the effects of the xGnP/MWCNT-OH ratio on the thermal, electrical, and mechanical properties of polydimethylsiloxane (PDMS) hybrid composites were investigated. With the total filler content fixed at 4 wt%, a hybrid composite consisting of 75% × GnP/25% MWCNT-OH showed the highest thermal conductivity (0.392 W/m K) and electrical conductivity (1.24 × 10−3 S/m), which significantly exceeded the values shown by either of the respective single filler composites. The increased thermal and electrical conductivity found when both fillers are used in combination is attributed to the synergistic effect between the fillers that forms an interconnected hybrid network. In contrast, the various different combinations of the fillers only showed a modest effect on the mechanical behavior, thermal stability, and thermal expansion of the PDMS composite.  相似文献   

11.
Hollow glass microsphere (HGM) filled low-density polyethylene (LDPE) composites were prepared, and the effects of density, content, and surface modification of HGM on the thermal and dielectric properties of the composites were investigated. It is found that the thermal conductivity of the composites decreases with increasing HGM content or decreasing HGM density. At the same HGM content and density, the composites filled with suitable amount of silane coupling agent (KH570) modified HGM exhibit higher thermal conductivity than unmodified-HGM filled composites. The dielectric constant at 1 MHz of the composites also decreases with increasing HGM content or decreasing HGM density, but their dielectric loss increases with increasing HGM content or increasing HGM density. By modifying the surface of HGM with suitable amount of KH570, the dielectric constant and loss at 1 MHz of the composites can be decreased at the same time. The results of microwave dielectric properties of the composites indicate that the dielectric constant decreases with increasing HGM content or decreasing HGM density, the quality factor (Q × f) decreases with increasing HGM content or increasing HGM density, but both dielectric constant and quality factor are slightly affected by the surface modification of HGM. Due to lower intrinsic thermal conductivity and dielectric constant but higher dielectric loss of HGM than LDPE, the thermal conductivity and dielectric properties of the composites can be controlled with adding HGM and varying its volume fraction. The surface modification of HGM improves the interface contact between HGM and LDPE in the composites, which is confirmed by the SEM observation, and thus the heat conduction and dielectric properties at low frequency are improved. Based on calculated thermal conductivity and dielectric constant of HGM, the experimental trends of thermal conductivity and dielectric constant at 1 MHz of the composites are analyzed by using different models, including typical models for particles-filled composites and special models developed for hollow microsphere filled composites. The results from suitable models show close correlation with the experimental values.  相似文献   

12.
New composites with high dielectric constant and low dielectric loss, based on expanded graphite (EG), CaCuTi4O12 (sCCTO) and cyanate ester (CE) resin, were developed by controlling the interaction between EG and sCCTO. Difference from EG, surface modified EG (mEG) has an additional strong chemical interaction with sCCTO, this not only improves the dispersion of fillers, but also enhances the filler-matrix interfacial adhesion, leading to different micro-structures and dielectric properties. Specifically, the percolation thresholds of mEG/sCCTO/CE and EG/sCCTO/CE composites are 3.45 vol% and 2.86 vol%, respectively. When the loading of conductors approaches the percolation threshold, mEG/sCCTO/CE composite has much higher dielectric constant and lower dielectric loss than EG/sCCTO/CE composite. The nature behind these attractive data was revealed by building an equivalent circuit.  相似文献   

13.
The main goals of this work were to study the effect of different chemical treatments on sisal fiber bundles tensile properties as well as on tensile properties of composites based on poly(lactic acid) (PLA) matrix and sisal fibers. For this purpose, sisal fibers were treated with different chemical treatments. After treating sisal fibers the tensile strength values decreased respect to untreated fiber ones, especially when the combination of NaOH + silane treatment was used. Taking into account fiber tensile properties and fiber/PLA adhesion values, composites based on silane treated fibers would show the highest tensile strength value. However, composites based on alkali treated and NaOH + silane treated fibers showed the highest tensile strength values. Finally, experimental tensile strength values of composites were compared with those values obtained using micromechanical models.  相似文献   

14.
《Composites Part A》2007,38(7):1675-1682
This research explores the potential of using exfoliated graphite nanoplatelets, xGnP, (graphene sheets ∼10 nm thickness, ∼1 μm diameter), as reinforcement in polypropylene, PP. xGnP–PP nanocomposites were fabricated by melt mixing and injection molding. The feasibility of using xGnP–PP nanocomposites was investigated by evaluating the flexural strength, modulus and impact strength and studying the morphology of this system as a function of xGnP loading and aspect ratio and by comparing the xGnP–PP with composites made with commercial available reinforcements such as carbon fibers, carbon black and clays. It is concluded that the smaller aspect ratio xGnP has the strongest impact on the mechanical properties of PP, at loadings up to 5 vol.%, compared to the other reinforcements used, which reflects the compatibility between the exfoliated graphite nanoplatelets and the PP matrix and the exceptional mechanical properties of xGnP, similar to crystalline graphite.  相似文献   

15.
A comparative study of the dielectric properties of poly(vinylidene fluoride) (PVDF) based nanocomposites with pristine multiwalled carbon nanotubes (MWNTs) and surface-modified MWNTs with core/shell structure (denoted as MEB) as fillers, was reported. Compared with MWNTs/PVDF composites, the MEB/PVDF composites exhibited lower loss tangent and higher dielectric permittivity. It is suggested that the conductive/nonconducting core/shell structure of the MEB filler is the main cause of the improved dielectric properties. Percolation based MWNTs networks is in charge of the improvement of dielectric permittivity, and the nonconducting emeraldine base layer of the MEB filler supports the low loss tangent and low conductivity in the MEB/PVDF composites.  相似文献   

16.
High relative permittivity and low dielectric loss were simultaneously achieved in the percolative nanocomposites with methoxypolyethylene glycol (mPEG) modified multi-walled carbon nanotubes (MWCNTs). The dense mPEG layer with a thickness of approximately 1.7 nm was continuously coated on the surface of MWCNTs. MWCNTs exhibited excellent dispersibility after being functionalized by mPEG (mPEG@MWCNTs), the mPEG@MWCNTs/ethanol suspension was still turbid even when the suspension was deposited for two months. A high permittivity of 69.7 and a low dielectric loss of 0.042 were simultaneously achieved in the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) nanocomposite with 4.02 vol% mPEG@MWCNTs at 1 kHz. The improved dielectric properties in the nanocomposite is mainly ascribed to the following reasons: (i) the increased microcapacitors formed by MWCNTs and insulated dielectric composite; (ii) the enhanced interfacial polarization due to the homogeneous dispersion of mPEG@MWCNTs in the nanocomposites and tight adhesion between mPEG@MWCNTs and P(VDF-HFP) matrix.  相似文献   

17.
Conductive polymer composites (CPCs) that contain a segregated structure have attracted significant attentions because of their promising for fulfilling low filler contents with high electromagnetic interference (EMI) properties. In the present study, segregated poly(vinylidene fluoride) (PVDF)/multi-walled carbon nanotubes (MWCNTs) composites were successfully prepared by mechanical mixing and hot compaction. The PVDF/MWCNTs samples with 7 wt% filler content possess high electrical conductivities and high EMI shielding effectiveness (SE), reaching 0.06 S cm−1 and 30.89 dB (in the X-band frequency region), much higher than lots of reported results for CNT-based composites. And the EMI SE greatly increased across the frequency range as the sample thickness was improved from 0.6 to 3.0 mm. The EMI shielding mechanisms were also investigated and the results demonstrated absorption dominating shielding mechanism in this segregated material. This effective preparation method is simple, low-cost, and environmentally-friendly and has potential industrial applications in the future.  相似文献   

18.
In situ polymerization of aniline is carried out in the presence of zinc ferrite to synthesize polyaniline/ZnFe2O4 composites (PANI/ZnFe2O4) by chemical oxidation method. The composite has been synthesized with various compositions (10, 20, 30, 40 and 50 wt.%) of zinc ferrite in PANI. From the infrared spectroscopy (FTIR) studies on polyaniline/ZnFe2O4 composites, the peak at 1140 cm?1 is considered to be measure of the degree of electron delocalization. The surface morphology of these composites is studied with scanning electron micrograph (SEM). The ac conductivity and dielectric properties are studied in the frequency range from 102 to 106 Hz. The results obtained for these composites are of scientific and technological interest.  相似文献   

19.
Nylon-6/flake graphite (FG) composite, Nylon-6/graphene intercalation compounds (GIC) composite and Nylon-6/exfoliated graphite (EG) composite were prepared by FG, GIC, EG and caprolactam via in situ polymerization, and the volume resistivities of Nylon-6/flake graphite derivatives composites were also investigated. Meanwhile, the structure of Nylon-6/EG composite was characterized and the thermal stability of Nylon-6/EG composite was investigated as well. When the mass percents of FG, GIC and EG were 1%, 2–4% and 1%, the volume resistivities of flake graphite derivatives composites would reach 7.5 × 106 Ω cm, 3.6 × 108–1.4 × 106 Ω cm and 2.3 × 106 Ω cm. When the mass percent of EG increases from 0% to 9%, the thermal stability temperature of Nylon-6/EG composite would enhance from 70 to 196 °C. This shows that Nylon-6/flake graphite derivatives composites can have the antistatic property and thermal stability synchronously.  相似文献   

20.
A facile strategy with the advantages of low cost and ease of mass production was presented to prepare low-density polyethylene (LDPE)/low-temperature expandable graphite (LTEG) composites with relatively high thermal conductivity by an in situ expansion melt blending process. LTEGs were expanded and delaminated into graphite multi-layers and graphite nanoplatelets during processing which synergistically created more thermo-conducting paths in the composites and hence led to great improvements in thermal conductivity. Thermal conductivity of the composite with 60 wt% of LTEG loading was increased by 23 times as compared to the pure LDPE, increasing from 0.47 to 11.28 W/mK. The incorporation of LTEG decreased the melting temperature and the degree of crystallinity of LDPE. Percolation threshold of both the electrical conductivity and rheological measurements was observed at about 8 vol% of LTEG loading. Moreover, the LDPE/LTEG composites showed better thermal stability compared to the pure LDPE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号