首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main objectives of this research were to investigate the formaldehyde emission, some mechanical properties and bonding quality of oil palm trunk (OPT) plywood treated with low molecular weight phenol–formaldehyde (LmwPF), as affected by resin concentration. The mechanical properties are affected by different of amount resin solid contents used. The OPT veneer were treated at either 40%, 32%, 23% or 15% of resin concentration and 12 mm thickness of 3-ply plywood panel were manufactured for each group. In this study the formaldehyde emission, modulus of rupture (MOR), modulus of elasticity (MOE) and bonding quality (shear strength) of OPT plywood were determined. The results revealed that the resin-treatment method was tend to significantly improved the mechanical properties of the OPT plywood panel in which increased solid absorption gives better mechanical properties. Apparently, high mechanical properties were obtained for panel manufacturer from veneer treated with 32% and 40% resin content. The resin-treated OPT plywood provided superior mechanical strength with improvements at least 202% MOE and 159% MOR compared to commercial OPT plywood. Whereas, mechanical properties of the resin-treated OPT plywood were drastically decrease with increasing the water substitution. Formaldehyde emission content of OPT panels decreased upon reduction of resin content into treatment process and were significant at resin concentration. The resin-treated OPT panels at 32% solid content provided a reasonable amount of free formaldehyde (0.359 mg/L) which attained F77 according to Japanese Agriculture Standard (JAS). The shear strength of resin-treated OPT plywood panel with 32% and 40% resin content achieved minimum requirements according to the standard European Norms EN 314-1 and EN 314-2 for the interior and exterior application.  相似文献   

2.
碳纤维三维编织复合材料的结构对拉伸和弯曲性能的影响   总被引:9,自引:0,他引:9  
研究了碳纤维四步法三维四向、三维五向编织结构复合材料的拉伸和弯曲性能,以及结构参数-编织角的变化对其拉伸和弯曲性能的影响,并与层合复合材料作了对比性研究.结果表明,三维编织复合材料具有良好的力学性能,其拉伸强度可达810MPa、拉伸模量可达95.6GPa,弯曲强度可达829.03MPa、弯曲模量可达67.5GPa.同时,编织角和编织结构对复合材料性能有较大的影响.随着编织角的增大,复合材料的拉伸、弯曲强度和模量均减小;三维五向结构的拉伸、弯曲强度和模量均高于四向结构;在纤维体积含量相近的情况下,通过对编织角的设计,可以设计三维编织复合材料的性能.  相似文献   

3.
Effects of post-hot isostatic pressing (post-HIP) on the elastic properties, strength and fracture toughness of different commercial alumina-based ceramics was investigated. The materials were presintered ceramics with alumina contents of 94, 97 and 99%. HIP was performed using a Mo or graphite furnace in a wide temperature range to establish regimes which allowed attainment of the best combination of mechanical properties, e.g. ultimate bending strength, Weibull's modulus, fracture toughness and modulus of elasticity. The results are discussed in relation to microstructure development.  相似文献   

4.
在传统熔融沉积方法的基础上, 采用颗粒混合料和螺杆挤出机构3D打印制备了致密和多孔氧化锆陶瓷, 系统研究了颗粒原料的打印性能、坯体显微结构特征和陶瓷材料的力学性能。研究结果表明, 该方法可以实现倾角达165°和跨度为5.5 mm的无支撑结构的打印成型。研究了两种打印路径对致密氧化锆陶瓷抗弯强度及抗弯强度Weibull模数的影响, 结果表明与传统单线填充模式相比, “单线+矩形”复合填充模式可以得到更高致密度和更优力学性能的陶瓷(抗弯强度达到637.8 MPa, Weibull模数达到9.10)。研究了不同气孔率多孔氧化锆陶瓷的压缩力学行为, 结果表明陶瓷的抗压强度和气孔率之间存在复合指数规律, 低气孔率时异面压缩的应力-应变曲线只呈现弹性阶段, 高气孔率时出现弹性阶段和坍塌阶段, 均未出现密实阶段。  相似文献   

5.
Synthetic resins are widely used in wood based composites manufacturing. Besides their many advantages, most of them contain formaldehyde and a chemical agents that cause environmental problems. Styrofoam known as expanded polystyrene, is used all over the world for various purposes including thermal insulation, packing, coffee cups, fabrication of car parts etc. This study investigated the evaluation possibilities of styrofoam wastes in plywood production as a bonding material. Pine (Pinus pinea) and poplar (Populus deltoides I-77/51) veneers were used to produce wood–styrofoam composite (WSC) and traditional plywood. Urea-formaldehyde adhesive was used as bonding material for traditional plywood panels. Two different types of styrofoam having high density (25 kg/m3) and low density (10 kg/m3) were used as binder in the manufacturing of WSC panels. Bonding and bending strength, modulus of elasticity, density and thermal conductivity of plywood and WSC panels were investigated. Experimental results showed that mechanical properties of panels manufactured with low density styrofoam type were higher than those of panels manufactured with high density styrofoam type. The lowest thermal conductivity among the all panels was found for poplar panels manufactured with high density styrofoam.  相似文献   

6.
塑木复合材与木材主要力学性质的比较研究   总被引:4,自引:5,他引:4  
李大纲  周敏  范丽君 《包装工程》2004,25(3):152-153,222
分析了塑木复合材与木材的抗弯强度、抗弯弹性模量、抗压强度和抗剪强度之间的差异,结果表明,塑木复合材的抗弯性能远低于鹅掌楸(Liriodendron sp.)和速生杨木(Populussp.);纵向抗压强度也低于木材的顺纹抗压强度,横向抗压强度为木材横纹抗压强度的2.95倍(I-69杨)~3.74倍(鹅掌楸),纵向抗剪强度与木材的顺纹抗剪强度与木材相当.因此可采用降低密度、改进材料结构或改进材料成型方式来增加塑木复合材料的抗弯性能和纵向抗压性能,以扩大其应用范围.  相似文献   

7.
Refractory materials are heterogeneous materials having complex microstructures with different constituent’s properties. The mechanical properties of these materials change depending on their chemical composition and temperature. Therefore, it is important to select a refractory material, which is suitable for working conditions and is fit to place of use. Artificial neural network (ANN) model is established to investigate the relationship among processing parameters (chemical composition, temperature) and mechanical properties (bending strength, Young’s modulus) in magnesia based refractory materials. The mechanical properties of magnesia based refractory materials having four different chemical compositions were investigated using three point bending test at temperatures of 25, 400, 500, 600, 700, 800, 900, 1000 and 1400 °C.The bending strength (σ) and Young’s modulus (E) were theoretically calculated by ANN method and theoretical results were compared with experimental values for each temperature. There were insignificant differences between experimental values and ANN results meaning that ANN results can be used instead of experimental values. Thus, mechanical properties of refractory materials having different chemical composition can be predicted by using ANN method regardless of the treatment temperature.  相似文献   

8.
Abstract

The room temperature mechanical properties of polycrystalline diamonds, i.e. tensile strength, transverse rupture strength, compressive strength, impact strength, fracture toughness, and elastic constants, have been determined. The applied test techniques are described and the results compared with those obtained by other authors. The fracture mode under the present experimental conditions was primarily transgranular. A grain size dependence, where strength increases with decreasing grain size, has been found. Fracture toughness was found to go through a maximum for grain sizes between 10 to 30 μm. The modulus of elasticity increases with increasing grain size. An influence of cobalt content on strength and modulus of elasticity has been found, while no significant influence on toughness could be determined. Increasing the cobalt content increases strength, but has the inverse effect on the modulus of elasticity. The results of strength, toughness, and elastic constants measurements are discussed in terms of available models and theories of polycrystalline ceramic materials. It can be seen from the results that polycrystalline diamonds behave in a manner similar to that of most engineering ceramics, but have the distinct advantage of a higher fracture toughness.

MST/596  相似文献   

9.
The aim of the study was to investigate the effects of thermal treatment on the mechanical and physical properties of wild pear wood. The results obtained for thermal treatment at 160 °C for 2 h showed that the modulus of elasticity was increased about 5%, while bending strength and compression strength decreased by 7.42% and 7.55%, respectively. The physical properties of wild pear wood were improved as 2.6%, 5.3%, 8.5% and 0.8% swelling in tangential, radial and longitudinal sections and 1.7%, 1.1% and 0.9% at 50, 65 and 85 Rh% and changes in ΔEab* was 8.50%, respectively. It was determined that the changes ratio of these properties increased as the temperature and durations were increasing. Therefore, wild pear wood can be used as an alternative for tropical woods in decoration and veneer industry.  相似文献   

10.
通过挤压一个缺口环或闭口环样品来评价不同管材的弹性模量和弯曲强度。在弹性范围内, 弹性模量可由载荷—位移关系和样品尺寸获到; 而弯曲强度则由断裂临界载荷决定。在本研究中, 四种管材被分为两组来研究这两种方法的适用范围。结果表明: 缺口环适合评价刚度较大、极限应变较小的材料, 而闭口环则更倾向于评价低刚度的材料。此外, 三点弯曲的数据也验证了这两种方法的有效性、便捷性及其各自的适用范围。  相似文献   

11.
Bone plates are the most common devices used for long bone fracture fixations. Metallic bone plates are conventionally used for load bearing regions suffer the disadvantages that they usually needs to be removed 1–2 years after surgery due to stress shielding and ion releasing effects. One solution to overcome these problems is to use bone plates made of composite materials with desirable mechanical properties as substitutes for the metallic types. In this research, a partially resorbable composite bone plate consisting of a poly L-Lactic acid matrix and textile bioglass fibers used as reinforcement was modeled and analyzed using the ANSYS software V. 9.0. Micromechanical study of a representative volume element (REV) was carried out using the 3D-finite element method to optimized volume fraction of the reinforcement. In this stage, ultimate tensile strength of the composite was determined. In the macromechanical analysis, a three dimensional, quarter symmetric finite element model was developed for a plate with five holes. Bending analysis was performed to determine the bending strength and the bending modulus of the plate. Results showed that for a volume fraction equal to 45%, the longitudinal modulus of elasticity and the ultimate tensile strength would be 23 GPa and 230 MPa, respectively. The bending strength and bending modulus of the plate were calculated to be about 55 MPa and 16.6 GPa, respectively. Compared to the data available on forearm bones in which the longitudinal modulus of elasticity is about 18 GPa, the tensile and bending strength are about 150 MPa and 40 MPa and the bending modulus is 7 GPa, it is concluded that the composite plate system is suitable for forearm region and it is capable of reducing stress shielding effects at the fracture site.  相似文献   

12.
《Composites Part A》2003,34(2):171-181
Nylon-wood fibre and polypropylene-wood fibre composite materials were manufactured without any additives to determine the effects of wood fibre on the mechanical properties of the different composites. The raw materials used were eucalypt hardwood fibre, Nylon fibre obtained from stockings, and polypropylene (PP) pellets. A hot press technique was used to manufacture the composite materials, and improvements in the manufacturing methods are suggested. Tests were carried out on the manufactured boards to determine tensile strength and modulus of elasticity. Fracture surfaces were examined using scanning electron microscopy to investigate failure mechanisms. An increase in tensile strength and modulus of elasticity was observed in wood fibre/Nylon matrix composites, indicating that interfacial bonding occurred between these two phases. Bundles of wood fibres with internal voids prevent achieving maximum mechanical properties. The tensile strength of the PP based composites decreased significantly with increasing wood fibre content.  相似文献   

13.
为系统研究钛-钢复合钢材的力学性能,对2 mm~12 mm厚TA2+Q235B钛-钢复合钢材进行了系列试验研究,包括拉伸、剪切、粘结、弯曲、冲击韧性、硬度等试验,其中拉伸试件设计考虑了复合比的影响。基于试验结果,得到了该类钛-钢复合钢材的基本力学性能指标,并重点对其单调拉伸荷载下的力学性能进行了分析研究。试验结果表明:钛-钢复合钢材的应力-应变曲线特征及典型力学性能指标与复合比的大小直接相关;随着复合比的增大,屈服平台逐渐消失,弹性模量逐渐减小,屈服强度和断后伸长率逐渐升高,但抗拉强度的变化并不明显,这与钛TA2和Q235B低碳钢本身的力学性能有关。基于拉伸试验数据和有限元数值计算结果,提出了钛-钢复合钢材的力学指标计算方法,建立了其本构模型。此外,剪切和粘结试验得到的复合界面强度尽管较低,但对拉伸力学性能影响十分有限;同时,该类复合钢材的受弯和冲击性能良好,硬度结果呈现两侧高、中间界面层低的情况。研究结果可为钛-钢复合钢材在结构工程领域的研究和应用提供基础参考和材料本构模型,并有利于促进其工程应用。  相似文献   

14.
Dyrseth AA  Skatter S 《Applied optics》1997,36(16):3649-3656
Electronic speckle pattern interferometry combined with phase-shifting techniques for vibration analysis of logs is presented. Changes in the vibration pattern were followed on a television monitor at the video rate. We determined resonant vibrations by scanning through the frequency range of interest and by changing the point of excitation. We observed bending and torsional modes of vibration by changing the support and point of excitation. The vibrational modes reflect the structural properties of the material. The longitudinal modulus of elasticity and the shear modulus were calculated, giving valuable information for the strength grading of logs.  相似文献   

15.
采用两种方法优化EVA/TiO2纳米复合材料的制备方法与工艺参数,选取性能最佳的一步法制备样本,进一步应用FESEM方法表征纳米粒子的粒径及分散状态,并测试材料力学性能。研究发现,基于神经网络和遗传算法的优化方法比正交实验分析优化方法更佳;纳米TiO2微粒在EVA基体中分散良好,拉伸强度、断裂伸长率和弹性模量均有所提高,起到了增强增韧作用。纳米TiO2填充量为5%时,拉伸强度提高最多;纳米TiO2填充量为1%时,断裂伸长率提高最多;随着纳米TiO2填充量的增加,弹性模量整体呈上升趋势。  相似文献   

16.
聂光临  包亦望  万德田  田远 《材料导报》2018,32(12):2072-2077, 2084
水泥基管材已广泛应用于市政、工业、能源等领域,准确的力学性能评价对管材构件的结构性能评估和质量控制至关重要。为解决水泥基管材力学性能难以评价的技术难题,针对缺口环和闭口环两种样品形式,基于材料力学理论推导了缺口环法与闭口环法测量管材弹性模量和弯曲强度的计算公式。利用缺口环法、闭口环法与三点弯曲法分别测得了硫铝酸盐水泥砂浆缺口环试样、闭口环试样与梁试样的弹性模量和弯曲强度。结果表明:三种方法所测得的弹性模量值与弯曲强度值均相近,由此证明缺口环法与闭口环法可以准确有效地测得管材试样的弹性模量和弯曲强度。  相似文献   

17.
采用标准试验方法,对首钢集团生产的楼承板用SQ410FRW耐火耐候钢冷轧钢带进行稳态拉伸试验,以测定其典型高温力学性能指标,包括钢材高温弹性模量、规定塑性延伸强度、抗拉强度、断后伸长率和断面收缩率。通过非线性回归方法得出相应的高温折减系数表达式,包括弹性模量折减系数、规定塑性延伸强度折减系数和抗拉强度折减系数。根据试验应力-应变关系曲线,回归得出基于Ramberg-Osgood模型(R-O模型)的应力-应变本构模型,以用于后续有限元参数化建模过程中对结构构件的温度场分析和顺序热力耦合分析。试验结果表明:绝大多数拉伸试样均在平行段内或标距段内发生断裂,且断后伸长率随温度升高呈现总体增大趋势;高温弹性模量、高温规定塑性延伸强度和抗拉强度在600℃及以下时降低较少,均保持在常温名义值的60%以上,基本满足耐火钢的力学性能指标要求;基于R-O模型的应力-应变本构关系表达式的拟合优度均在90%以上,与试验应力-应变曲线吻合良好,故提出的本构模型可用于相关钢结构或组合结构构件的有限元抗火分析。  相似文献   

18.
采用ZrOCl2溶液浸渍法把锆化合物引入碳纤维预制体, 经热处理、热梯度化学气相渗透致密化和高温石墨化工艺制备了C/C-ZrC复合材料。性能测试结果表明, C/C复合材料的弯曲强度和模量随ZrC含量的增加而增大, ZrC含量为12.08wt%时, 其强度和模量分别为42.5 MPa 和9.6 GPa, 比未改性试样分别提高了70.0%和43.3%。基体中结合较弱的微米级ZrC颗粒的存在不利于碳基体强度的提高, 但其对材料最终性能的影响是次要的, 碳基体中亚微米/纳米级ZrC颗粒的存在和良好的ZrC-C界面结合, 提高了碳基体的强度和模量, 进而提高了复合材料的最终性能。  相似文献   

19.
Factors that affect weld mechanical properties of commercially pure titanium have been investigated using artificial neural networks. Input data were obtained from mechanical testing of single-pass, autogenous welds, and neural network models were used to predict the ultimate tensile strength, yield strength, elongation, reduction of area, Vickers hardness and Rockwell B hardness. The results show that both oxygen and nitrogen have the most significant effects on the strength while hydrogen has the least effect over the range investigated. Predictions of the mechanical properties are shown and agree well with those obtained using the 'oxygen equivalent' (OE) equations.  相似文献   

20.
Graphene has been extensively studied as nanofiller to produce ultra-strong and ductile metal nanocomposites but challenges such as poor adhesion at the metal–carbon interface have yet to be met. Carbon honeycombs (CHCs) are highly porous 3D graphene networks that possess a very large surface area-to-volume ratio, an outstanding physical absorption capacity and notable mechanical properties. Herein, these recently synthetized 3D CHCs are introduced in copper as nanofillers, and the mechanical properties of the nanocomposites, such as elastic modulus, tensile strength, failure strain, compressive strength, and critical strain, are obtained using molecular dynamics simulations. Three CHC lattice types are studied, and the metal–carbon interface is accurately modeled by using melting and recrystallization of the copper matrix around the nanofiller. Gains between 28% and 50% are obtained for the Young's modulus, while the tensile strength improved between 43% and 49%. Pullout tests reveal that the copper nanopillars that form by the filling of the honeycomb cells of CHC by copper atoms considerably increase the pullout force and are responsible for improvements in adhesion and in loading stress transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号