首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interface fracture toughness and fracture mechanisms of plasma-/sprayed thermal barrier coatings (TBCs) were investigated by interfacial indentation test (IIT) in combination with acoustic emission (AE) measurement. Critical load and AE energy were employed to calculate interface fracture toughness. The critical point at which crack appears at the interface was determined by the IIT. AE signals produced during total indentation test not only are used to investigate the interface cracking behavior by Fast Fourier Transform (FFT) and wavelet transforms but also supply the mechanical information. The result shows that the AE signals associated with coating plastic deformation during indentation are of a more continuous type with a lower characteristic frequency content (30-60 kHz), whereas the instantaneous relaxation associated with interface crack initiation produces burst type AE signals with a characteristic frequency in the range 70-200 kHz. The AE signals energy is concentrated on different scales for the coating plastic deformation, interface crack initiation and interface crack propagation. Interface fracture toughness calculated by AE energy was 1.19 MPam1/2 close to 1.58 MPam1/2 calculated by critical load. It indicates that the acoustic emission energy is suitable to reflect the interface fracture toughness.  相似文献   

2.
The indentation technique for determining material toughness is applied to spinel and yttria-stabilized zirconia plasma-sprayed coatings in this investigation. Fracture toughness of the coatings ranged from 1.9 to 3.4 MPa√m for spinel and 2.0 to 3.3 MPa√m for yttria-stabilized zirconia. These results are in good agreement with those obtained by other experimenters for bulk materials.  相似文献   

3.
Thermal fracture mechanisms in ceramic thermal barrier coatings   总被引:6,自引:0,他引:6  
Ceramic thermal barrier coatings (TBCs) represent an attractive method of increasing the high-tempera-ture limits for systems such as diesel engines, gas turbines, and aircraft engines. However, the dissimilari-ties between ceramics and metal, as well as the severe temperature gradients applied in such systems, cause thermal stresses that can lead to cracking and ultimately spalling of the coating. This paper reviews the research that has considered initiation of surface cracks, initiation of interfacial edge cracks, and the effect of a transient thermal load on interface cracks. The results of controlled experiments are presented together with analytical models. The implications of these findings to the differences between diesel en-gines and gas turbines are discussed. The importance of such work for determining the proper design cri-teria for TBCs is underlined.  相似文献   

4.
The evolution of microhardness, fracture toughness and residual stress of an air plasma-sprayed thermal barrier coating system under thermal cycles was investigated by a modified Vickers indentation instrument coupled with three kinds of indentation models. The results show that fracture toughness on the top coating surface after thermal cycles changes from 0.64 to 3.67 MPa m1/2, and the corresponding residual stress near the indented region varies from − 36.8 to − 243 MPa. For the interface region of coating and bond coat, fracture toughness in the coating close to interface ranges from 0.11 to 0.81 MPa m1/2, and residual stress varies from − 5 to − 30 MPa, which are consistent with available data. For the lateral region of coating, fracture toughness and residual stress display strong gradient characteristics along the thickness direction due to the special layered structure.  相似文献   

5.
Tensile fracture behavior of thermal barrier coatings (TBCs) on superalloy was investigated in air at room temperature (RT), 650 °C and 850 °C. The bond coat NiCrAlY was fabricated by either high velocity oxygen fuel (HVOF) or air plasma spraying (APS), and the top coat 7%Y2O3-ZrO2 was deposited by APS. Thus two kinds of the TBC system were formed. It was shown that the coating had little effect on tensile stress-strain curves of the substrate and similar tensile strength was obtained in two kinds of the TBC system. However, the cracking behavior in the two kinds of TBC system at RT was different, which was also different from that at 650 °C and 850 °C by scanning electron microscopy. The interface fracture toughness of the two kinds of TBC system was evaluated by the Suo-Hutchinson model and the stress distribution in the coating and substrate was analyzed by the shear lag model.  相似文献   

6.
7.
《Acta Materialia》2005,53(2):487-498
The competition between transverse surface and sub-surface cracks in a thin, hard coating bonded to polycarbonate substrate due to spherical indentation is investigated in real-time as a function of coating thickness and indenter radius. Fine grain (Y-TZP) and medium grain (alumina) ceramics and pre-abraded amorphous glass are used for the coating. As the coating thickness is reduced, the familiar star-shape sub-surface damage is suppressed, resulting in the top-surface ring crack as the dominant fracture mode. In the intermediate thickness range, the sub-surface damage occurs as a set of off-axis cracks. LEFM in conjunction of a large-strain FEM contact code is used to predict the onset of transverse fracture in the coating. Guided by the test results, the damage on both coating surfaces is assumed as a cylindrical surface crack. In consistency with their polycrystalline nature, the coatings are assumed to contain a distribution of cracks, with the least fracture load among all possible crack lengths taken as the critical load. The numerical predictions compare well with the tests results, and they help identify the applicability range of the simpler point loading case as well as a fracture analysis that is based on a critical stress criterion in terms of the system parameters.  相似文献   

8.
《Acta Materialia》2008,56(15):4080-4090
Rockwell indentation testing as a method of establishing the interfacial fracture toughness of thermal barrier coatings is investigated. To this end, indentation tests have been systematically performed on coatings with yttria-stabilized zirconia top coat deposited by electron beam physical vapor deposition. Specimens in “as-coated” condition and after heat treatment in air have been studied. Unexpectedly, indentation of the heat-treated samples resulted in smaller delaminations than the as-coated samples, suggesting an increase in fracture toughness for coatings subjected to elevated temperatures. Careful image analyses of the cross-section of the indented area show that the ceramic top coat undergoes a complex damage evolution during indentation that is altered by thermal treatment. The consequences of this are discussed and we note that care must be taken when evaluating fracture parameters for multilayered structures based on indentation testing.  相似文献   

9.
10.
In this study, the adhesion strength of thermal barrier coatings 8YSZ (ZrO2 + 8 wt.% Y2O3) deposited on NiCrAlY bond coats by atmospheric plasma spraying is investigated experimentally. A modified four-point bending specimen that can generate a single interface crack to facilitate the control of crack growth was adopted for testing. The fracture surfaces were examined using a scanning electron microscope. Images show that cracks are initiated along YSZ/NiCrAlY interfaces, then kink and grow uniformly within the YSZ layer. The load-displacement curves obtained indicate three distinct stages in crack initiation and stable crack growth. Based on a microstructural model, finite element analyses were performed to extract the bonding strength of the thermal barrier coatings. The fracture toughness of the plasma-sprayed 8YSZ coatings, in terms of critical strain energy release rate Gc, can be reliably obtained from an analytical solution or from a numerical simulation of the cracking process using compliance methods.  相似文献   

11.
Thermal barrier coatings (TBCs) are used in applications that involve high temperatures and severe temperature gradients in order to improve product performance. The understanding of the mechanisms resulting in coating delamination allows the development of materials that can prolong component life. The goal of this study was to demonstrate that single layer mullite-YSZ composites resulted in reduced interface fracture under the application of a thermal shock. This was accomplished by comparing the thermal shock behavior of three coating architectures: monolithic YSZ, monolithic mullite and a mullite-YSZ composite. The coating architectures were chosen to optimize material properties to reduce the driving force for coating failure. It was found that under thermal loads that result in similar surface temperatures, the mullite-YSZ composite developed shorter multiple surface cracks along with shorter horizontal cracks compared to the monolithic YSZ. The composite coating was able to combine advantageous material properties from both the constituent ceramics.  相似文献   

12.
使用大气等离子喷涂法制备传统YSZ涂层与2mol%Eu~(3+)掺杂YSZ涂层。使用扫描电镜观察并测量2种涂层的微观形貌与孔隙率。采用闪光导热仪分别测量2种涂层在100~1100℃范围内的热导率。采用氧化循环试验箱分别对YSZ涂层与YSZ:Eu涂层进行30次、50次的氧化循环处理并计算2种涂层未处理试样与氧化循环试样的界面断裂韧性,氧化循环试验环境温度为1100℃。结果表明,在相同温度下,YSZ:Eu涂层热导率低于YSZ涂层热导率,说明2mol%Eu~(3+)掺杂可有效降低YSZ热障涂层的热导率;YSZ:Eu涂层与YSZ涂层的界面断裂韧性均随氧化循环次数的增加而下降,TGO厚度随氧化循环次数的增加而增大;相同热处理条件下YSZ:Eu涂层界面断裂韧性大于YSZ涂层,TGO厚度更小,说明2mol%Eu~(3+)掺杂抑制了TGO的生长,提高了涂层界面性能。  相似文献   

13.
等离子喷涂热障涂层的隔热性分析   总被引:4,自引:0,他引:4  
采用大气等离子喷涂方法制备不同类型的氧化钇部分稳定氧化锆热障涂层:传统涂层、纳米团聚粉末制备的纳米涂层和空心球粉末制备的空心球涂层。通过扫描电镜、透射电镜、压汞仪和激光脉冲法观察和测试各种涂层的组织形貌、空隙分布和导热系数,并在相同条件下测试各种涂层的隔热性能。结果表明:纳米涂层空隙率最低,内部孔洞细小。空心球涂层组织相对疏松,内部层片更薄,有最高的空隙率和最大的平均空隙大小。传统涂层介于二者之间。纳米涂层和传统涂层均表现出双态空隙大小分布。涂层的导热系数均随着温度的上升而升高。传统涂层的热导率最高,纳米涂层与空心球涂层的热导率相接近。纳米涂层具有最好的隔热性能,空心球涂层接近纳米涂层的隔热效果。隔热效果与涂层厚度呈线性关系。随着厚度增加,导热系数低的纳米涂层和空心球涂层的隔热效果增长幅度高于传统涂层。  相似文献   

14.
The efficiency and reliability of modern jet engines strongly depend on the performance of thermal barrier coatings (TBCs), which prevent melting and oxidation of the turbine blades’ structural core. The system’s lifetime is limited by cracks appearing in and in the vicinity of an oxide layer that grows in the TBC under thermal cycling. High replacement costs have led to an increased demand to identify, quantify and remedy damage in TBCs. An integrated experimental–numerical approach is presented for studying the main factors that contribute to damage, particularly interfacial irregularities. Damage at several stages of oxidation in TBCs is analyzed in samples with predefined interfacial irregularities. The model predicts the experimentally observed crack patterns, clearly quantifying the influence of imperfections and indicating that damage can be delayed by surface treatment.  相似文献   

15.
In this work, yttria stabilized zirconia (YSZ) coatings were deposited by atmospheric plasma spray (APS) technique under various powder feed rates and spray distances. The microstructure and phase analysis were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Tensile adhesion test (TAT) and interfacial indentation test (IIT) methods were used to evaluate adhesion of coatings. The effect of spray parameters on the coatings adhesion as well as its toughness was investigated. The obtained results revealed that with increasing powder feed rate and spray distance, adhesion of the coatings reaches to a maximum and then reduces. Interfacial toughness values change in the same manner. Adhesion/toughness behaviors of the YSZ coatings were related to microstructural characteristics including the volume fraction and size of pores and unmelted particles.  相似文献   

16.
Modulated plasma arc not only can heat the powder, but also can excite ultrasonic of different frequencies and different powers. The principles and characters of the plasma arc-excited ultrasonic were described, and the ultrasonic plasma spraying was compared with normal plasma spraying. Zirconia thermal barrier coatings (TBCs) were fabricated with two kinds of method. The TBCs were studied by the optical microscope observation, SEM observation and bonding strength experiment. The results show that suitable ultrasonic changes the performance and microstructure of TBCs in evidence. And the mechanism of ultrasonic influencing the TBCs was also discussed.  相似文献   

17.
以双层结构热障涂层为研究对象,采用三维X射线显微镜、图像处理技术研究了热障涂层的形貌、组成、厚度、孔隙及孔隙率等三维结构特征。采用三维成像方法获得了高分辨率的热障涂层层状结构CT图像,用三维分割与提取法得到了陶瓷隔热层、粘结层和基体的三维形貌,定量分析了厚度、孔隙尺寸、孔隙数量及孔隙率等热障涂层重要表征参数。结果表明,三维X射线显微镜厚度分析结果与扫描电镜分析结果基本一致,孔隙率受重建精度影响。  相似文献   

18.
During the last decade a number of ceramic materials, mostly oxides have been suggested as new thermal barrier coating (TBC) materials. These new compositions have to compete with the state-of-the-art TBC material yttria stabilized zirconia (YSZ) which turns out to be difficult due to its unique properties. On the other hand YSZ has certain shortcomings especially its limited temperature capability above 1200 °C which necessitates its substitution in advanced gas turbines.In the paper an overview is tried on different new materials covering especially doped zirconia, pyrochlores, perovskites, and aluminates. Literature results and also results from our own investigations will be presented and compared to the requirements. Finally, the double-layer concept, a method to overcome the limited toughness of new TBC materials, will be discussed.  相似文献   

19.
In the present study, copper (Cu), nickel (Ni), and molybdenum (Mo)-alloyed ductile iron was pack boronised at 800–850°C for 3–6?h and subsequently the microhardness and the microstructures of boride layers under different process parameters were investigated in detail. Further, Vickers indentation fracture toughness tests were executed on borided surfaces under 200?g load. The fracture toughness of borided layers was estimated separately by a series of equations and the half-length of corner cracks and the half diagonals of Vickers indents were used as variables. Generally, the values of the obtained fracture toughness were found to be higher than those of previous studies. It was found that thinner boride layers were formed at lower boronising temperatures. The highest toughness value and the thickest boride layer were obtained in the sample boronised at 850°C for 6?h.  相似文献   

20.
Multiwalled-carbon-nanotube (MWCNT)-reinforced silicon nitride coatings were grown to evaluate the toughness contribution of nanotubes in a ceramic coating. An MWCNT array was first grown using catalytic chemical vapor deposition of acetylene on a silicon substrate. This aligned MWCNT preform was then infiltrated with an amorphous silicon nitride matrix by low-pressure chemical vapor deposition of dichlorosilane (DCS) and ammonia (NH3). The fracture toughness of this material was determined by generating cracks using nanoindentation and then employing finite-element analysis to estimate the bridging toughness contribution of the MWCNTs. The MWCNT bridging toughness of the composites is determined to be ~5.6 MPa m1/2, which is seven times higher than that of the matrix. The interfacial frictional stress is also estimated and ranges from 7 to 20 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号