首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to better exploit the natural cork available in Algeria, an experimental characterisation of a jute/epoxy–cork sandwich material to impact and indentation was undertaken. The aim of this work is to evaluate the impact energy and cork density influence over the sandwich plate damage behaviours by instrumented static and dynamic tests. The results show that the onset damage force, the maximum force and the damage size are influenced by the cork density and the impact energy. The sandwich material, with the heavy agglomerated cork having a density of 310 kg/m3 is characterised by a weaker energy dissipation capacity, by about 3.72% for impact test and 3.29% for indentation one, than the sandwich with lighter cork (160 kg/m3). This difference is an infusion process consequence. The infiltrated resin into the agglomerated cork pores changes the material local rigidity. Also, under impact loading the sandwich laminates dissipate 11% more energy than with the quasi-static indentation test.  相似文献   

2.
This paper addresses the response of Glass Fiber Reinforced Plastic laminates (GFRPs) under low-velocity impact. Experimental tests were performed according to ASTM: D5628 for different initial impact energy levels ranging from 9.8 J to 29.4 J and specimen thicknesses of 2, 3 and 4 mm. The impact damage process and contact stiffness were studied incrementally until a perforation phase of the layered compounds occurred, in line with a force–deflection diagram and imaging of impacted laminates. The influence that impact parameters such as velocity and initial energy had on deflection and damage of the test specimens was investigated. Finite Element Simulation (FES) was done using MSC. MARC® was additionally carried out to understand the impact mechanism and correlation between these parameters and the induced damage. The simulation and experimental results reached good accord regarding maximum contact force and contact time with insignificant amount of damage.  相似文献   

3.
《Composites Part A》2007,38(6):1483-1492
This study explored a novel hybrid syntactic foam for composite sandwich structures. A unique microstructure was designed and realized. The hybrid foam was fabricated by dispersing styrene–butadiene rubber latex coated glass microballoons into a nanoclay and milled glass fiber reinforced epoxy matrix. The manufacturing process for developing this unique microstructure was developed. A total of seven groups of beam specimens with varying compositions were prepared. Each group contained 12 identical specimens with dimensions 304.8 mm × 50.8 mm × 15.2 mm. The total number of specimens was 84. Among them, 42 beams were pure foam core specimens and the remaining 42 beams were sandwich specimens with each foam core wrapped by two layers of E-glass plain woven fabric reinforced epoxy skin. Both low velocity impact tests and four-point bending tests were conducted on the foam cores and sandwich beams. Compared with the control specimens, the test results showed that the rubberized syntactic foams were able to absorb a considerably higher amount of impact energy with an insignificant sacrifice in strength. This multi-phase material contained structures bridging over several length-scales. SEM pictures showed that several mechanisms were activated to collaboratively absorb impact energy, including microballoon crushing, interfacial debonding, matrix microcracking, and fiber pull-out; the rubber layer and the microfibers prevented the microcracks from propagating into macroscopic damage by means of rubber pinning and fiber bridge-over mechanisms. The micro-length scale damage insured that the sandwich beams retained the majority of their strength after the impact.  相似文献   

4.
In this work, residual post-impact properties of two configurations of E-glass/jute hybrid laminates are characterized, both manufactured using a total fibre volume of 50 ± 2% (14 glass fibre layers + 4 jute fibre layers). T-laminates included a core obtained by multiple layers of jute between two E-glass fibre reinforced skins, whilst in Q-laminates single layers of jute fibres were intercalated at different levels between E-glass fibre reinforced layers. All laminates were impacted at five levels of energy, from 5 to 15 J, and then subjected to post-impact flexural tests.The results suggest that T hybrids perform better at low impact energies (up to 10 J), which do not damage significantly the laminate core. In contrast, Q hybrids are better suited to withstand extensive damage produced by higher impact energies (12.5 and 15 J), in that they allow a more effective redistribution of impact damage in the structure. This was confirmed by acoustic emission (AE) monitoring during flexural loading, which offered indications on the maximum stress laminates can undergo after impact damage. Pulse IR thermography yielded information on their mode of failure by visualizing impact-damaged areas.  相似文献   

5.
The high velocity impact response of composite laminated plates has been experimentally investigated using a nitrogen gas gun. Tests were undertaken on sandwich structures based on Kevlar-29 fiber/epoxy resin with different stacking sequence of 6061-T6 Al plates. Impact testing was conducted using cylindrical shape of 7.62 mm diameter steel projectile at a range of velocities (180–400 m/s) were investigated to achieve complete perforation of the target. The numerical parametric study of ballistic impact caused by same conditions in experimental work is undertaken to predict the ballistic limit velocity, energy absorbed by the target and comparison between simulation by using ANSYS Autodyn 3D v.12 software and experimental work and study the effects of shape of the projectile with different (4, 8 and 12 mm) thicknesses on ballistic limit velocity. The sequence of Al plate position (front, middle and back) inside laminate plates of composite specimen was also studied. The Al back stacking sequence plate for overall results obtained was the optimum structure to resist the impact loading.The results obtained hereby are in good agreement with the experimental (maximum error of 3.64%) data where it has been shown that these novel sandwich structures exhibit excellent energy absorbing characteristics under high velocity impact loading conditions. Hence it is considered suitable for applications of armor system.  相似文献   

6.
In this study, the effect of impactor diameter on the impact response of woven glass–epoxy laminates has been investigated. Impact tests were performed by using Fractovis Plus test machine with four different impactor nose diameters as 12.7, 20.0, 25.4 and 31.8 mm. Specimens were impacted at various impact energies ranging from 5 J to perforation thresholds of the composite at room temperature. Variation of the impact characteristics such as the maximum contact load, maximum deflection, maximum contact time and absorbed energy versus impact energy are investigated. Results indicated that the projectile diameter highly affects the impact and Compression After Impact (CAI) response of composite materials.  相似文献   

7.
The effect of seawater immersion on impact behavior of glass–epoxy composite pipes is experimentally investigated. Glass–epoxy pipes with [±55°]3 orientation were fabricated using filament winding method. Composite pipes were selected for four different diameters as 50 mm, 75 mm, 100 mm, and 150 mm. The pipes were immersed in artificial seawater having a salinity of about 3.5% for 3, 6, 9, and 12 months in laboratory conditions. At the end of the conditioning period, the specimens were impacted at three distinct energy levels as 15 J, 20 J, and 25 J at ambient temperature of 20 °C. The comparisons between the dry and immersed cases were carried out by using contact force, deflection and absorbed energy data of the impact tests. Results show that moisture absorption, salt in seawater, diameter of specimen and residual stresses produced by manufacturing process of the composite pipe have significant effect on maximum contact force, maximum deflection, absorbed energy and failure of composite pipes according to exposure time to seawater.  相似文献   

8.
This research investigates the influence of preload and boundary condition compliance on low-velocity impact damaged CFRP T800S/3900-2B plates subject to secondary higher-velocity soft-body impact (50 J, 75 J, 100 J). A bilinear cohesive element based delamination model combined with ply-based composite material failure was developed using LS-DYNA 971. Double Cantilever Beam (DCB), 3-point End-Notched Flexure (ENF), and Fixed Ratio Mixed Mode Bending (FRMMB) simulations validate the accuracy of the delamination model when compared with theory. The low-velocity impact simulations were shown to compare well with the results of drop-tower impact experiments and ultrasonic inspection data in terms of maximum impact force and projected delamination area. An investigation of boundary condition compliance in the direction of impact showed a reduction in peak impact force, interlaminar delamination and intralaminar failure with increasing coupon translation. High-velocity impact simulations based on the model with initial damage showed a reduction in interlaminar delamination damage with tensile preload when compared to compressive preload and unloaded cases for all impact energies.  相似文献   

9.
《Composites Part A》2007,38(3):795-801
This paper examines the influence of binder tow stitch density on the impact performance of advanced composite structures. Spatially reinforced composite reinforcements with multi-axis, multi-layer structures were woven on a specially developed loom. The binder tow stitch density, which was used to consolidate the structure, was varied in the range of 1–4 binder tow stitches/cm2 (10 × 10 mm to 5 × 5 mm binder tow stitch spacing). A drop weight impact test (6.7 J/mm of composite thickness) was used to damage the samples. Both the depth of penetration and the damage area were measured after impact. The analysis of the results has shown that as the binder tow stitch density was increased the extent of damage decreased. The weave architecture, in terms of the relative position of the ±45° tows, was also shown to be a significant factor, the nearer the off-axis tows are to the impact surface the greater was the damage area.  相似文献   

10.
Entangled steel wire (Q195F) with total porosity of 36.3 ± 1.3 to 61.8 ± 2.4% and pore sizes of 15–825 µm have been investigated in terms of the porous morphologies, impact deformation and failure behavior. The results reveal that the impact toughness increases with the decrease of the porosity. The sintered entangled steel wire materials with 61.8 ± 2.4% porosity exhibit an average of 11.8 J/cm2 impact toughness. With 36.3 ± 1.3% porosity, the sintered materials have an average of 45.5 J/cm2 impact toughness. Impact absorbing energy and impact toughness have been obtained by Charpy impact testing. Essential impact deformation and failure mechanisms such as pore edges (i.e. fibers) bending, bulking, rotating, yielding, densification and fracture, as well as break (or avulsion) of sintering points in the steel wire framework contribute to the excellent energy-absorbing characteristics under impact loading condition.  相似文献   

11.
《Composites Part A》2007,38(4):1174-1182
This study examines the effect of stitching on the impact performance of a class of graphite/epoxy cross-ply laminates with the aim of investigating the ability of through-thickness reinforcement to improve the delamination resistance of laminates.Unstitched and stitched rectangular specimens (65 mm × 87.5 mm) were simply supported by a steel plate having a rectangular opening 45 mm × 67.5 mm in size and impacted at the center with energies ranging between 1 and 13 J. Stitched and unstitched laminates revealed similar structural performances in terms of force versus displacement response, energy absorption and residual indentation depth. It was also observed that whereas stitching does not appear capable of preventing the initiation and spread of delaminations, it induces a clear reduction of damage area when stitches bridge delaminations sufficiently developed in length.  相似文献   

12.
The paper presents the results of an experimental study of interfacial failure in a multilayered structure consisting of a dentin/resin cement/quartz-fiber reinforced composite (FRC). Slices of dentin close to the pulp chamber were sandwiched by two half-circle discs made of a quartz-fiber reinforced composite, bonded with bonding agent (All-bond 2, BISCO, Schaumburg) and resin cement (Duo-link, BISCO, Schaumburg) to make Brazil-nut sandwich specimens for interfacial toughness testing. Interfacial fracture toughness (strain energy release rate, G) was measured as a function of mode mixity by changing loading angles from 0° to 15°. The interfacial fracture surfaces were then examined using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) to determine the failure modes when loading angles changed. A computational model was also developed to calculate the driving forces, stress intensity factors and mode mixities. Interfacial toughness increased from  1.5 to 3.2 J/m2 when the loading angle increases from  0 to 15°. The hybridized dentin/cement interface appeared to be tougher than the resin cement/quartz-fiber reinforced epoxy. The Brazil-nut sandwich specimen was a suitable method to investigate the mechanical integrity of dentin/cement/FRC interfaces.  相似文献   

13.
C/SiC composite sandwich structure with stitched lattice core was fabricated by a technique that involved polymer impregnation and interweaving. The mechanical behaviors of C/SiC composite sandwich structure were investigated at room temperature. The out-of-plane compressive strength was 20.97 MPa while modulus was 1473.55 MPa. The microstructural evolution on compression fracture surfaces of the stitching yarns was investigated by scanning electron microscopy, and the damage pattern of fibers on compression fracture surface was presented and discussed. Under an in-plane compression loading, the C/SiC composite sandwich structure displayed a linear-elastic behavior until failure. The peak strength and average modulus are 165.61 MPa and 19.74 GPa, respectively. The failure of the specimen was dominated by the fracture of the facesheet.  相似文献   

14.
Impact behaviors at low velocity of composite laminates reinforced with fabrics of different architectures are investigated. Unidirectional prepreg, 2D woven and 3D orthogonal fabrics, all formed of Ultrahigh Molecular Weight Polyethylene (UHMWPE) filaments, were selected as reinforcements to form composite laminates using hot pressing technology. Low velocity impact tests were conducted using a drop-weight impact equipment at the energy level of 35 J. A three-coordinate measuring device was employed to determine the volume of plastic deformation and surface dent diameter. The results show that the composite laminates of single-ply 3D orthogonal woven fabric exhibit better energy absorbed capacity and impact damage resistance as compared to those of unidirectional and 2D plain-woven fabric.  相似文献   

15.
Helmets reduce the frequency and severity of head and brain injuries over a range of impact severities broader than those covered by the impact attenuation standards. Our goal was to document the impact attenuation performance of common helmet types over a wide range of impact speeds. Sixty-five drop tests were performed against the side of 10 different helmets onto a flat anvil at impact speeds of 0.9–10.1 m/s (energy = 2–260 J; equivalent drop heights of 0.04–5.2 m). Three non-approved beanie helmets performed poorly, with the worst helmet reaching a peak headform acceleration of 852g at 29 J. Three full-face and one open-face helmet responded similarly from about 100g at 30 J to between 292g and 344g at 256–260 J. Three shorty style helmets responded like the full-face helmets up to 150 J, above which varying degrees of foam densification appeared to occur. Impact restitution values varied from 0.19 to 0.46. A three-parameter model successfully captured the plateau and densification responses exhibited by the various helmets (R2 = 0.95–0.99). Helmet responses varied with foam thickness, foam material and possibly shell material, with the largest response differences consistent with either the presence/absence of a foam liner or the densification of the foam liner.  相似文献   

16.
The purpose of this study is to characterize the structure of the beak of Toco Toucan (Ramphastos toco) and to investigate means for arresting fractures in the rhinotheca using acrylic resin. The structure of the rhamphastid bill has been described as a sandwich structured composite having a thin exterior comprised of keratin and a thick foam core constructed of mineralized collagenous rods (trabeculae). The keratinous rhamphotheca consists of superposed polygonal scales (approximately 50 µm in diameter and 1 µm in thickness). In order to simulate the orientation of loading to which the beak is subjected during exertion of bite force, for example, we conducted flexure tests on the dorso-ventral axis of the maxilla. The initially intact (without induced fracture) beak fractured in the central portion when subjected to a force of 270 N, at a displacement of 23 mm. The location of this fracture served as a reference for the fractures induced in other beaks tested. The second beak was fractured and repaired by applying resin on both lateral surfaces. The repaired maxilla sustained a force of 70 N with 6.5 mm deflection. The third maxilla was repaired similarly except that it was conditioned in acid for 60 s prior to fixation with resin. It resisted a force of up to 63 N at 6 mm of deflection. The experimental results were compared with finite element calculations for unfractured beak in bending configuration. The repaired specimens were found to have strength equal to only one third of the intact beak. Finite element simulations allow visualization of how the beak system (sandwich shell and cellular core) sustains high flexural strength.  相似文献   

17.
This experimental work is aimed at the characterization of new fibre reinforced composites based on epoxy resin with both protein (wool) and lignocellulosic (jute) natural fibres. Wool-based and hybrid (wool/jute) composites with two different stacking sequences (intercalated and sandwich) were developed. Their microstructure has been investigated through optical and scanning electron microscopy, whereas their quasi-static mechanical behaviour has been evaluated in tension and bending. In addition, the impact behaviour under low-velocity impact at three different impact energies, namely 6 J, 8 J and 9 J has been addressed. The tensile and flexural tests have been monitored using acoustic emission (AE) in order to elicit further information about failure mechanisms. AE monitoring showed that development of damage was due to nucleation of matrix microcracks and subsequent debonding and pull-out phenomena in wool fibre composites and that only in hybrid composites a sufficient stress transfer across the jute fibre/matrix interface was achieved. The results confirmed the positive role of hybridization with jute fibres in enhancing both the tensile and flexural behaviour of wool-based composites, though highlighting the need for an improved adhesion between wool fibres and epoxy matrix.  相似文献   

18.
《Composites Part B》2013,44(8):2898-2906
A radome must not only withstand various forces during operation, but also provide a window for electromagnetic signals. A radome is generally a composite sandwich structure. Much of the damage to radomes is barely visible to the naked eye on the outer surface, but is severe internally. In this study, a radome health management strategy consisting of in-flight damage event detection and ground damage evaluation processes is proposed. A radome health management system, composed of an on-board subsystem and a ground subsystem, was developed to realize the strategy. An in-flight event detection system was developed based on acoustic emission (AE) technology. A built-in amplifier-integrated PZT sensor was used, and the minimum impact energy that the on-board subsystem can detect was determined. The AE sensor was then switched to an ultrasonic receiver. A scanning laser ultrasonic technology was combined with the ultrasonic receiver to develop a ground nondestructive evaluation subsystem. For in situ damage visualization, laser ultrasonic frequency tomography and wavelet-transformed ultrasonic propagation imaging algorithms were developed in this study. To demonstrate the robustness of the ground subsystem, a damage was generated by 5.42 J impact in a glass/epoxy radome with honeycomb core, and the impact image of 25 mm in diameter invisible outside could be visualized with the combination of ultrasonic spectral imaging (USI) and wavelet-transformed ultrasonic propagation imaging (WUPI), which made the propagation of only the damage-related ultrasonic modes visible.  相似文献   

19.
In this study a designed rolling setup was used to fabricate new structure polypropylene/hydroxyapatite-polypropylene (PP/HA-PP) sandwich nano-composites. To check the effect of rolling process and PP layers content on the structure and mechanical properties of these sandwich composites, different mechanical tests and analysis were performed on these composites. Results of tensile, bending and buckling tests show the rolling process improves the strength, modulus and flexural rigidity of composites significantly while with increasing the PP layers content from 10 vol.% to 20 vol.% decreases the stiffness, flexural rigidity and modulus of composites slightly. Results of impact test demonstrate the rolling process and increasing the volume percentage of the PP layers in sandwich composites cause a dramatic improve in impact absorbed energy of the PP/HA-PP sandwich composites. The results of Differential Scanning Calorimetry (DSC) analysis confirm the rolling process increases the crystallinity and molecular alignment of polypropylene in composites. The results of mechanical tests and DSC analysis show the increasing of polypropylene molecular alignment by rolling process is the most dominant reason of improvement the mechanical properties of sandwich composites.  相似文献   

20.
The low velocity impact behavior of E-glass/basalt reinforced hybrid laminates, manufactured by resin transfer moulding technique, was investigated. Specimens prepared with different stacking sequences were tested at three different impact energies, namely 5 J, 12.5 J and 25 J. Residual post-impact mechanical properties of the different configurations were characterized by quasi static four point bending tests. Post-impact flexural tests have been also monitored using acoustic emission in order to get further information on failure mechanisms. Results showed that basalt and hybrid laminates with an intercalated configuration exhibited higher impact energy absorption capacity than glass laminates, and enhanced damage tolerance capability. Conversely, the most favorable flexural behavior was shown by laminates with symmetrical sandwich-like configuration (E-glass fiber fabrics as core and basalt fiber fabrics as skins).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号