首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Adhesively bonded composite patch repair has been widely used to restore or extend the service life of cracked structural components due to its effectiveness to mechanical repair technique. In this work, the finite element method is applied to analyse the performance of the bonded composite patch for repairing cracks emanating from semicircular notch root in pure mode II. The stress intensity factor was computed at the crack tip repaired using a boron/epoxy patch for different orientation of fibers, taking into account the disbond. In this case, the increase of a patch thickness reduces the negative effects of disbond. When this effect is significant between the patch and the plate, it reduces the repair effectiveness. The maximum reduction obtained by using a boron/epoxy of fibers in the x-direction is of the order of 20% more important compared to a patch having its fibers in the y-direction. The stress intensity factor exhibits an asymptotic behaviour as the disbond size increases.  相似文献   

2.
S. Naboulsi  S. Mall   《Composite Structures》1998,41(3-4):303-313
Analyses of adhesively bonded composite patches to repair cracked structures have been the focus of many studies. Most of these studies investigated the damage tolerance of the repaired structure by using linear analysis. This study involves nonlinear analysis of the adhesively bonded composite patch to investigate its effects on the damage tolerance of the repaired structure. The nonlinear analysis utilizes the three-layer technique which includes geometric nonlinearity to account for large displacements of the repaired structure and also material nonlinearity of the adhesive. The three-layer technique uses two-dimensional finite element analysis with Mindlin plate elements to model the cracked plate, adhesive and composite patch. The effects of geometric nonlinearity on the damage tolerance of the cracked plate is investigated by computing the stress intensity factor and fatigue growth rate of the crack in the plate. The adhesive is modeled as a nonlinear material to characterize debond behavior. The elastic-plastic analysis of the adhesive utilizes the extended Drucker-Prager model. A detailed discussion on the effects of nonlinear analysis for a bonded composite patch repair of a cracked aluminum panel is presented in this paper.  相似文献   

3.
This study introduces an analytical procedure to characterize the fatigue crack growth behavior in an aluminium panel repaired with a bonded composite patch. This procedure involves the computation of the stress intensity factor from a two-dimensional finite element method consisting of three layers to model cracked plate, adhesive and composite patch. In this three layer finite element analysis, as recently introduced by the authors, two-dimensional Mindlin plate elements with transverse shear deformation capability are used. The computed stress intensity factor is then compared with the experimental counterpart. The latter was obtained from the measured fatigue crack growth rate of an aluminium panel with a bonded patch by using the power law relationship (Paris Law) of an unpatched aluminum panel. Both a completely bonded patch (with no debond) and a partially bonded patch (with debond) are investigated in this study. This procedure, thus, provides an effective and reliable technique to predict the fatigue life of a repaired structure with a bonded patch, or alternatively, it can be used to design the bonded composite patch configuration to enhance the fatigue life of cracked structure.  相似文献   

4.
In this paper, we investigated the crack growth behaviour of cracked thin aluminium plate repaired with bonded composite patch. The finite element method is used to study the performance of the bonded composite reinforcement or repair for reducing the stress concentration at a semicircular lateral notch and repairing cracks emanating from this kind of notch. The effects of the adhesive properties and the patch size on the stress intensity factor variation at the crack tip in mode I were highlighted. The obtained results show that the stress concentration factor at the semicircular notch root and the stress intensity factor of a crack emanating from notch are reduced with the increase of the diameter and the number of the semicircular patch. The maximal reduction of stress intensity factor is about 42% and 54%, respectively, for single and double patch. However, the gain in the patch thickness increases with the increase of the crack length and it decreases when the patch thickness increases. The adhesive properties must be optimised in order to increase the performance of the patch repair or reinforcement.  相似文献   

5.
This paper concerns a numerical study by the finite element method of the cracked structure repaired by single and double bonded composite patches. The stress intensity factor is used as fracture criteria. The obtained results showed the advantage of the double patch compared to single on the reduction of the stress intensity factor at the crack tip. The effects of the properties of the plate and the patch and the adhesive on the beneficial effect of the double patch are highlighted. The adhesive properties must be optimised in order to increase the advantage of the double patch and to avoid the adhesive failure. The patch properties have a significant effect on the beneficial effects of the double symmetric patch.  相似文献   

6.
In this study, we investigated the fatigue crack growth behavior of cracked aluminum plate repaired with bonded composite patch especially in thick plate. Adhesively bonded composite patch repair technique has been successfully applied to military aircraft repair and expanded its application to commercial aircraft industry recently. Also this technique has been expanded its application to the repair of load bearing primary structure from secondary structure repair. Therefore, a through understanding of crack growth behavior of thick panel repaired with bonded composite patch is needed. We investigated the fatigue crack growth behavior of thick panel repaired with bonded composite patch using the stress intensity factor range (ΔK) and fatigue crack growth rate (da/dN). The stress intensity factor of patched crack was determined from experimental result by comparing the crack growth behavior of specimens with and without repair. Also, by considering the three-dimensional (3D) stress state of patch crack, 3D finite element analyses were performed to obtain the stress intensity factor of crack repaired by bonded composite patch. Two types of crack front modeling, i.e. uniform crack front model and skew crack front model, were used. The stress intensity factor calculated using FEM was compared with the experimentally determined values.  相似文献   

7.
In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.  相似文献   

8.
A line spring model is developed for analyzing the fracture problem of cracked metallic plate repaired with the double-sided adhesively bonded composite patch. The restraining action of the bonded patch is modeled as continuous distributed linear springs bridging the crack faces provided that the cracked plate is subjected to extensional load. The effective spring constant is determined from 1-D bonded joint theory. The hyper-singular integral equation (HSIE), which can be solved using the second kind Chebyshev polynomial expansion method, is applied to determine the crack opening displacements (COD) and the crack tip stress intensity factors (SIF) of the repaired cracked plate. The numerical result of SIF for the crack-tip correlates very well with the finite element (FE) computations based on the virtual crack closure technique (VCCT). The present analysis approaches and mathematical techniques are critical to the successful design, analysis and implementation of crack patching.  相似文献   

9.
ABSTRACT Prestressed composite patch bonded on cracked steel section is a promising technique to reinforce cracked details or to prevent fatigue cracking on steel structural elements. It introduces compressive stresses that produce a crack closure effect. Moreover, it modifies the crack geometry by bridging the crack faces and so reduces the stress intensity range at the crack tip. Fatigue tests were performed on notched steel plate reinforced by CFRP strips as a step toward the validation of crack patching for fatigue life extension of riveted steel bridges. A crack growth induced debonded region in the adhesive‐plate interface was observed using an optical technique. Moreover, the size of the debonded region significantly influences the efficiency of the crack repair. Debond crack total strain energy release rate is computed by the modified virtual crack closure technique (MVCCT). A parametric analysis is performed to investigate the influence of some design parameters such as the composite patch Young's modulus, the adhesive thickness and the pretension level on the adhesive‐plate interface debond.  相似文献   

10.
The adhesively bonded composite patch repair technique has been used to restore or extend the service life of the cracked aluminium structural components because of its efficiency. In this study, the finite element method is used to analyse the performance of the different bonded composite patches at a semicircular lateral notch and the repair of cracks emanating from this kind of notch. The knowledge of the stress distribution in the neighbourhood of the cracks is important for the analysis of their repair according to the geometry of the patch. The effects of the mechanical and geometrical properties on the variation of the stress intensity factor in the crack tip were highlighted. The effects of the adhesive properties and of the patch size on the stress intensity factor variation at the crack tip in mode I were also highlighted. The comparison between the double and single patch repairs is also given in this study. The results obtained show that the stress intensity factor of the crack tip repaired by two composite patches, is reduced to a half compared to the one that is repaired only by one patch. The orientation of fibres possessing a higher rigidity perpendicularly to the crack propagation considerably influences the reduction of the stress intensity factor. The adhesive properties must be optimised in order to increase the performance of the patch repair or the reinforcement.  相似文献   

11.
In this study, the distribution of the thermal residual stresses due to the adhesive curing in bonded composite repair is analysed using the finite element method. The computation of these stresses comprises all components of the structures: cracked plate, composite patch and adhesive layer. In addition, the influence of these residual stresses on the repair performance is highlighted by analysing their effect on the stress intensity factor at the crack tip. The obtained results show that the normal thermal stresses in the plate and the patch are important and the shear stresses are less significant. The level of the adhesive thermal stresses is relatively high. The presence of the thermal stresses increases the stress intensity factor at the crack tip, what reduce the repair performance.  相似文献   

12.
Bonded composite repair has been recognized as an efficient and economical method to extend the fatigue life of cracked aluminium components. In this work, the finite element method is applied to analyze the central crack’s behaviour repaired by a boron/epoxy composite patch. The knowledge of the stress distribution in the neighbourhood of cracks has an importance for the analysis of their repair according to the patch geometry. The effects of mechanical and geometrical properties of the patch on the variation of the stress intensity factor at the crack tip were highlighted. The obtained results show that the stress intensity factor at the repaired crack with composite patch of height 2c/3 is reduced about 5% compared to cracks repaired with octagonal patch of size c. For patch height of c/3 the reduction is about 7%. The adhesive properties must be optimised in order to increase the repair performances and to avoid the adhesive failure.  相似文献   

13.
Mathematical techniques are extended to compute crack opening displacements in a cracked plate with an adhesively bonded composite patch. The plate and the patch are considered as orthotropic materials. The problem is reduced to the solution of integral equations. A software program is written to compute shear stresses in adhesive, stress intensity factors in the plate and the crack openings at the centreline of the crack. The effects of adhesive thickness, adhesive modulus, patch thickness and plate thickness on crack openings are investigated. A test program is carried out to obtain crack opening displacements in plate with bonded patch. A good agreement with analytical predictions is obtained. The effects of patches bonded on one or both sides of a plate on stress intensity factors are evaluated.  相似文献   

14.
A combined analytical and numerical study of an isotropic cracked plate that was repaired by using a bonded composite patch was conducted. The analytical work was based on Rose's equations, whereas for the numerical investigation a three-dimensional finite element analysis was implemented. A number of cracked plates with different crack lengths and overall dimensions of the composite repair were considered. The composite patch was made of unidirectional laminates with different stacking sequences. Both, one- and two-sided patches were analysed. Results are presented for the stress intensity factor in the patched crack and the maximum stress reinforcement stress and adhesive strain. It was found that for the case of a two-sided reinforcement the results obtained by both methods were in good agreement. However, for the case of a single reinforcement the accuracy of the analytical method decreased due to the tendency to out-of-plane bending as a result of bonding a reinforcing patch to only one face of a plate, which is ignored in the analysis.  相似文献   

15.
根据应力强度因子在线弹性范围内具有可叠加性,将金属裂纹板复合材料修补结构进行简化,在表面裂纹线弹簧模型的基础上,建立了基于超奇异积分方程的Line-Spring模型。利用第二类Chebyshev多项式展开的方法,将超奇异积分方程转化为线性方程组,推导出以裂纹面位移表示的应力强度因子表达式,得到了裂纹尖端应力强度因子的数值解,并利用虚拟裂纹闭合法加以验证。参数分析确定了影响对称修补裂纹板应力强度因子的两个主要参数:胶层界面刚度和补片与金属板刚度比,为胶接修补结构的承载能力分析以及改进设计提供理论依据。  相似文献   

16.
Adhesively bonded composite patch repair is efficient means to regain load carrying capacity, alleviate the crack growth, and improve the service life of the damaged structure. In this paper, three dimensional finite element models are developed to examine the fracture behavior of a single edge V-notched Aluminum plate repaired with Kevlar-49/epoxy or e-glass/epoxy pre-preg patches on both sides. Contour integral method was used for evaluating the stress intensity factor (SIF), an indicator of the crack stability. The load transfer mechanisms, stress distribution, damage variable (D), and crack mouth opening displacement (CMOD), were also presented to estimate the effectiveness of composite patch repair. The influence of the patch material, crack length and the adhesive thickness has been investigated. Results have shown that the crack induced damage increased nonlinearly with a larger crack size. With the composite patch repairs, SIF is reduced to 1/7–1/10 of that of the bare plate and CMOD decreased by 79%. The damage variable is reduced significantly and the load capacity is increased. A thinner adhesive layer results in a higher percentage of load shared by the composite patch.  相似文献   

17.
Analysis of cracked plates with a bonded patch   总被引:5,自引:0,他引:5  
The problem of a cracked plate repaired by an adhesively bonded patch is studied. A shear spring model is adopted to reduce the problem to the analysis of a cracked plate and a patch subjected to external loads and interacting adhesive shear. While the patch is treated by the finite element method, the cracked plate is analyzed by the boundary element method, in which a special fundamental solution satisfying the boundary condition on the crack surface is introduced. The present formulation provides comparable results on the stress intensity factor of the patched crack with less computational effort.  相似文献   

18.
金属裂纹板经复合材料补片胶接修补后,其结构强度明显提高,但裂纹板中的裂纹会导致严重的应力集中现象,并易产生塑性变形,呈现强烈的材料物理非线性特性,需要采用弹塑性力学原理,进行复合材料胶接修复结构的静强度预测。为此,考虑金属板材料的非线性特性,建立了金属裂纹板复合材料胶接修补结构的弹塑性有限元模型,并通过试验验证了模型的有效性。在此基础上,提出了基于裂纹尖端的张开位移(COD)判据的拉伸强度预测方法,分析了修复结构的塑性应变、COD以及静拉伸强度。结果表明:相对于应力强度因子K判据, COD判据能更有效地预测修复试件的静拉伸强度。   相似文献   

19.
A combined boundary element method and finite element method (BEM/FEM) is employed to investigate the fatigue crack growth behavior of cracked aluminum panels repaired with an adhesively bonded fiber-reinforced polymer (FRP) composite patch. Numerical simulation of crack growth process of a cracked aluminum panel repaired with a FRP composite patch under uniaxial cyclic loading has been carried out. The curve of crack length on unpatched side of the cracked panel versus the number of cyclic loading is determined by the numerical simulation, and it agrees well with experimental data. Furthermore, the crack front profiles of the cracked panel during fatigue crack growth and the distributions of stress intensity factors along crack fronts are also numerically simulated.  相似文献   

20.
This paper describes a 2D FE modelling technique for predicting fatigue crack growth life of integral structures reinforced by bonded straps. This kind of design offers a solution to the intrinsic lack of damage tolerance of integral structures. Due to the multiple and complex failure mechanisms of bonded structures, a comprehensive modelling technique is needed to evaluate important design parameters. In this Part I of a two-part paper, the actions and mechanisms involved in a bonded structure are discussed first, followed by presenting the modelling approaches to simulate each mechanism. Delamination or disbond of the strap from the substrate is modelled by computing the strain energy release rate on the disbond front and applying a fracture mechanics criterion. Thermal residual stresses arising from the adhesive curing process and their redistribution with the substrate crack growth are calculated and taken into account in the crack growth analysis. Secondary bending effect caused by the un-symmetric geometry of one-sided strap is also modelled. In the classic linear elastic fracture mechanics, a non-dimensional stress intensity factor, i.e. the geometry factor β, depends only on the sample’s geometry. This β factor cannot be found for this kind of bonded structures, since the magnitude of disbond is related to the applied stress and the disbond size modifies the geometry of the structure. Moreover, secondary bending effect is geometric nonlinear thus the stress intensity factor cannot be normalised by the applied stress. For these reasons an alternative technique has been developed, which requires calculating the stress intensity factors at both the maximum and minimum applied stresses for each crack length. This analysis technique is implemented in a computer program that interfaces with the NASTRAN commercial code to compute the fatigue crack growth life of strap reinforced structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号