首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a novel rare-earth complex, dithio-aminomethyl-lysine samarium (DALSm), was prepared and then was employed as activator, accelerator, cross-linker and interfacial modifier to improve the mechanical properties of SBR/silica nanocomposites. The results showed that 6 phr DALSm performed a higher vulcanization efficiency than the combination of 5 phr activator zinc oxide (ZnO), 2 phr stearic acid (SA), and 2 phr accelerator diethyl dithiocarbamate zinc (EDCZn). Meanwhile, the XPS and FTIR analysis of DALSm/silica model compounds confirmed that hydrogen bonds and coordination bonds could be formed between DALSm and silica during vulcanization process, which can effectively facilitate the homogenous dispersion of silica particles into SBR matrix and enhance the interface adhesion between rubber matrix and filler. As a consequent, the mechanical properties of SBR/DALSm/silica nanocomposites were substantially improved and much more excellent than those of the SBR/EDCZn/silica nanocomposites containing equivalent filler content. Based on the results of immobilized polymer layer, the reinforcing mechanism of DALSm in SBR/silica nanocomposites was analyzed.  相似文献   

2.
Biogenic silica (BSi) was added at different ratios to some polymer blends of polyisoprene rubber (NR) and chlorosulphonated polyethylene rubber (CSM) cured by conventional sulfur system. The reinforcing performance of the filler was investigated using rheometric, mechanical and swelling measurements, differential scanning calorimetry (DSC), thermogravimetric (TGA) and scanning electron microscopy (SEM) analysis. There was a remarkable decrease in the optimum cure time (tc90) and the scorch time (ts2), which was associated with an increase in the cure rate index (CRI), with filler loading up to 30 phr in the different blend ratios. The tensile strength and hardness was 4–5 Sh-A higher in the case for the different blend compositions, while the resistance to swelling in toluene became higher. SEM photographs show that the filler is located at the interface between the different polymers which induces compatibilization in the immiscible blends. DSC scans of the filled blends showed shifts in the glass transition temperatures Tg which can be attributed to the improve interfacial bonding between filler and NR/CSM matrix. A higher thermal stability of NR/CSM/BSi composites was detected.  相似文献   

3.
Styrene butadiene rubber (SBR) based hybrid nanocomposites containing carbon black (CB) and organo-modified nanoclay (NC) was prepared. X-ray diffraction (XRD) and transmission electron microscopy (TEM) revealed the presence of intercalated, aggregated, and partially exfoliated structures. Incorporating 10 phr NC to the control SBR containing 20 phr CB resulted 153% increase in tensile strength, 157% increase in elongation at break and 144% stress improvement at 100% strain, which showed synergistic effect between the fillers. The dynamic modulus reinforcement of nanocomposites was examined by the Guth, Modified Guth, and Halpin–Tsai equations. For predicting CB filled nanocomposite modulus, the contribution of modified intercalated structure of clay and the ‘nano-unit’ (dual structure) comprising CB–NC should be considered.  相似文献   

4.
A conductive silicone rubber (SR) composite, filled with both carbon nanotubes (CNTs) and carbon black (CB) is prepared by a simple ball milling method. Because of the good dispersion and synergistic effects of CNT and CB, the SR composite (SR with 2.5 phr CB and 1.0 phr CNT hybrid fillers) shows improvement in mechanical properties such as tensile strength and strain to failure. As well, due to the assembly of conductive pathways generated by the CNT and CB, the nanocomposite becomes highly conductive at a comparatively low concentration, with high sensitivity for tensile and compressive stress. Long-term measurement of properties shows that the SR composite maintains the excellent electrical properties under different strain histories. These outstanding properties show that the SR composite has potential applications in tensile and pressure sensors.  相似文献   

5.
《Composites Part B》2013,44(8):3069-3075
The use of rice husk (RH) powder as a reinforcing filler in blends of natural rubber and high-density polyethylene (NR/HDPE) was studied via surface modification of the particle surface. The RH powder was pre-washed with sodium hydroxide (NaOH) prior to coating with liquid natural rubber (LNR) and reinforced by electron beam (EB) irradiation. The effects of the radiation dosage on the LNR-coated rice husk (RHr) as a reinforcing agent in the composite were evaluated from the mechanical and thermal properties, as well as from the blend homogeneity. The mechanical properties enhanced with the dosage of radiation on the RHr, and reached an optimum dose in the range 20–30 kGy. The composites filled with radiated RHr showed the highest storage modulus (E′) and low tangent delta (tan δ) a radiation dosage of 30 kGy. The scanning electron microscopy (SEM) micrograph of the fractural tensile surface showed that an effective RHr particle matrix interaction occurred in the RH powder at a radiation dosage of 20 kGy. Improved RH filler–matrix interfacial bond strength and adhesion to the matrix were achieved by coating the RH powder and curing the rubber coat by electron beam irradiation.  相似文献   

6.
The use of rice husk (RH) powder as a reinforcing filler in blends of natural rubber and high-density polyethylene (NR/HDPE) was studied via surface modification of the particle surface. The RH powder was pre-washed with sodium hydroxide (NaOH) prior to coating with liquid natural rubber (LNR) and reinforced by electron beam (EB) irradiation. The effects of the radiation dosage on the LNR-coated rice husk (RHr) as a reinforcing agent in the composite were evaluated from the mechanical and thermal properties, as well as from the blend homogeneity. The mechanical properties enhanced with the dosage of radiation on the RHr, and reached an optimum dose in the range 20–30 kGy. The composites filled with radiated RHr showed the highest storage modulus (E′) and low tangent delta (tan δ) a radiation dosage of 30 kGy. The scanning electron microscopy (SEM) micrograph of the fractural tensile surface showed that an effective RHr particle matrix interaction occurred in the RH powder at a radiation dosage of 20 kGy. Improved RH filler–matrix interfacial bond strength and adhesion to the matrix were achieved by coating the RH powder and curing the rubber coat by electron beam irradiation.  相似文献   

7.
The present work deals with the toughening of brittle epoxy matrix with C8 ether linked bismaleimide (C8 e-BMI) and then study the reinforcing effect of carbon black (CB) in enhancing the conducting properties of insulating epoxy matrix. The Fourier transform infrared spectroscopy (FTIR) and Raman analysis indicate the formation of strong covalent bonds between CB and C8 e-BMI/epoxy matrix. The X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) analysis indicate the event of phase separation in 5 wt% CB loaded epoxy C8 e-BMI nanocomposites. The impact strength increased up to 5 wt% of CB loading with particle pull and crack deflection to be driving mechanism for enhancing the toughness of the nanocomposite and beyond 5 wt% the impact strength started to decrease due to aggregation of CB. The dynamic mechanical analysis (DMA) also indicates the toughness of the nanocomposites was improved with 5 wt% of CB loading due to the phase segregation between epoxy and C8 e-BMI in the presence of CB. The electrical conductivity was also increased with 5 wt% of CB due to classical conduction by ohmic chain contact.  相似文献   

8.
Using polyester polyol and diphenylmethane diisocyanate (MDI) as basic component, and using graphite nanosheets (GN) and carbon black (CB) as conductive filler, polyurethane/graphite nanosheets/carbon black foaming conducting nanocomposites have been prepared by filling mold curing reaction. The morphology, electrical properties and mechanical properties of the prepared PU/GN foams have been investigated. It showed that the percolation threshold effect of PU/GN composite occurred at the content around 12 wt.% of the GN, which was lower than that of carbon black (CB) composite. Besides, PU/GN foams showed much better conductive properties and mechanical properties than that of CB system.  相似文献   

9.
This paper is aiming to analyze the effects of electron beam irradiation on the mechanical properties and structural–morphology of nano-sized montmorillonite (MMT) added polyvinyl alcohol (PVOH) composite. MMT particles were added to the PVOH matrix at various loading level that ranges from 0.5 to 4.5 phr MMT and electron beam irradiated with dosages ranging from 6 to 36 kGy. The results showed that tensile strength of MMT added PVOH composites at 1.5 and 2.5 phr MMT were observed marginally higher compare to neat PVOH when irradiation dosages increased to 26 kGy. However, when the concentration of MMT exceeded 2.5 phr, the application of irradiation seems to cause adverse effect to the PVOH–MMT composite. Besides, according to the X-ray diffraction analysis, the application of low irradiation dosage (⩽16 kGy) has significantly enhanced the intercalation effect of MMT particles at high loading (4.5 phr) in PVOH matrix. This also found to be consistent with the scanning electron microscopy observation where the dispersion of MMT particles in PVOH matrix was noted to be more homogeneous than non-irradiated samples. Further increment in irradiation dosage up to 36 kGy has significantly reduced the crystallinity which indicates the higher radiation energy could rupture the crystallite structures in PVOH matrix.  相似文献   

10.
The surface elastic moduli of silica-reinforced rubbers and rubber blends were investigated by atomic force microscopy (AFM)-based HarmoniX material mapping. Styrene–butadiene rubbers (SBR) and ethylene–propylene–diene rubbers (EPDM) and SBR/EPDM rubber blends with varying concentrations of silica nanoparticles (0, 5, 10, 20, 50 parts per hundred rubber, phr) were prepared to investigate the effect of different composition on the resulting morphology, filler distribution and elastic moduli of a specific rubber or rubber blend sample. For SBR, the elastic modulus values varied from 0.5 MPa for unfilled SBR to 5 MPa for 50 phr reinforced SBR with the increase in the concentration of filler. For EPDM, the corresponding values increased from 1.4 MPa for unfilled EPDM to 4.5 MPa for 50 phr reinforced EPDM. Local stiff and soft domains in silica-reinforced SBR and EPDM rubbers and rubber blends were identified by HarmoniX AFM imaging. While the stiff silica particles show modulus values as high as 2 GPa, the rubber matrix reveals modulus values in the range of ca. 30 MPa for the rubber blends to ca. 300 MPa for the unfilled rubbers. The lower value of elastic modulus of the EPDM phase in the blend, compared to the blank EPDM compound can be attributed to the presence of Sunpar oil in the compound which has a very good affinity with EPDM and decreases the rubber modulus. The elastic moduli maps revealed an increase of the areal fraction of silica particles showing an intrinsic surface modulus value with rising silica content in the compound preparation mixture. HarmoniX AFM measurements revealed the formation of larger silica aggregates in EPDM in contrast to SBR where isolated silica particles were observed. For silica-reinforced rubber blends a phase separation into a soft (ca. 40 MPa) and a significantly harder phase could be observed (ca. 500 MPa–1.5 GPa) indicating the incorporation of silica particles in the SBR phase. Using HarmoniX AFM imaging significantly higher surface elastic moduli were observed compared to those obtained by bulk tensile testing. Possible reasons for the observed differences between bulk modulus values and those measured by AFM are discussed in detail, including the aspect of different averaging procedures like inherent to surface probing by AFM versus bulk tensile testing, different filler distributions in SBR and EPDM and the AFM modulus calibration procedures.  相似文献   

11.
Four types of rice bran carbon (RBC) with different particle sizes were compounded with nitrile rubber (NBR) in a laboratory size two-roll miller. The obtained RBC/NBR composites were characterized using Field Emission Scanning Electron Microscopy (FE-SEM) and tensile tests. Experimental results showed the RBC with lowest particle size exhibited best dispersion state and superior reinforcement ability. Then, we investigated the influence of RBC loading on the morphology, vulcanization characteristics, mechanical, thermal and friction properties of NBR composites. Experimental results indicated that the incorporation of RBC resulted in higher torque values, longer curing time, but shorter scorch time. The addition of RBC remarkably improved the mechanical properties of NBR composites. However, when the RBC loading exceeded 60 phr, the improvement in the tensile strength was not significant due to the poor dispersion state and weak interfacial bonding between RBC and NBR matrix, which were confirmed by Mooney–Rivlin stress–strain curves and FE-SEM observations. The thermal stabilities of RBC/NBR composites were largely improved as the loading of RBC increased. Friction tests revealed that under a certain concentration, the presence of RBC increased the static friction coefficient of NBR composites, suggesting the anti-skid role of RBC in the NBR composites. The overall results demonstrated that RBC could act as ideal filler for NBR composites providing both economic and environmental advantages.  相似文献   

12.
The aim of the present research work is to develop expanded graphite (EG) and isocyanate modified graphite nanoplatelets (i-MG) filled SBR/BR blends, which can substitute natural rubber (NR) in some application areas. The present study investigated the effect of i-MG on the physical, mechanical and thermo-mechanical properties of polybutadiene rubber (BR), styrene butadiene rubber (SBR) and SBR/BR blends in the presence of carbon black (CB). Graphite sheets were modified to enhance its dispersion in the rubber matrices, which resulting in an improvement in the overall physical and mechanical properties of the rubber vulcanizates. Compounds based on 50:50 of BR and SBR with ∼3 wt% nanofillers with CB were fabricated by melt mixing. The morphology of the filled rubber blends was investigated by wide angle X-ray diffraction (WAXD) and high resolution transmission electron microscopic (HR-TEM) analyses. The intercalated and delaminated structures of the nanofiller loaded rubber blends were observed. Scanning electron microscopic (SEM) analysis of the cryo-fractured surfaces of the rubber compounds showed more rough and tortuous pathway of the fractured surfaces compared to the fractured surfaces of the only CB loaded rubber composites. Filled rubber compounds exhibit increase in the ΔS (torque difference) value, reduced scorch and cure time compared to their respective controls. Dynamic mechanical thermal analysis (DMTA) of the filled rubber compounds shows an increase in the storage modulus compared to the controls. Isocyanate modified graphite nanoplatelets (i-MG) containing rubber compounds in the presence of CB showed an increase in the mechanical, dynamic mechanical, hardness, abrasion resistance and thermal properties compared to the alone CB filled rubber vulcanizates.  相似文献   

13.
The thermal conductivity of polymer composites containing nanofillers such as GNP (graphene nanoplatelet) and carbon black (CB) was investigated using experimental and theoretical approaches. We developed a fabrication method that allows different shapes and sizes of nanofillers to be highly dispersed in polymer resin. When the bulk and in-plane thermal conductivities of the fabricated composites were measured, they were found to increase rapidly as the GNP filler content increased. The in-plane thermal conductivity of composites with 20 wt.% GNP filler was found to reach a maximum value of 1.98 W/m K. The measured thermal conductivities were compared with the calculated values based on a micromechanics model where the waviness of nanofillers could be taken into account. The waviness of the incorporated GNP filler is an important physical factor that determines the thermal conductivity of composites and must be taken into consideration in theoretical calculations.  相似文献   

14.
The present study deals with the properties of polycarbonate (PC)/clay nanocomposites prepared through melt and solution blending at two different clay loadings (0.5 phr and 1 phr) with preserved optical transparency of PC. The organoclay was prepared by exchanging the Na+ ions presented in the clay galleries of Na-MMT with butyltriphenylphosphonium (BuTPP+) ions, and denoted as BuTPP-MMT. The outstanding thermal stability of the BuTPP-MMT (∼1.44 wt% loss at 280 °C, after 20 min), concomitant with the increase in gallery height from 1.24 nm to 1.83 nm, proved its potentiality as nanofiller for melt-blending with PC. The X-ray diffraction analysis (XRD) revealed the destruction of the ordered geometry of aluminosilicate layers in the nanocomposites. However, from direct visualization through transmission electron microscopy, a discernible amount of clay was found to be localised in PC matrix in the 1 phr clay loaded nanocomposites (TEM). The differential scanning calorimetric (DSC) study revealed a nominal increase in glass transition temperature (Tg) of the PC in the nanocomposites. The thermal stability of the nanocomposites was increased with increase in clay loading. The nanocomposites possessed improved tensile strength and modulus than that of the virgin PC and the properties were related to the amount of clay loading and degree of clay dispersion. The dynamic mechanical analysis (DMA) revealed that the storage modulus increased in both the glassy and rubbery region with increase in clay loadings in the nanocomposites. Moreover, the optical transparency of the PC was retained in the PC/clay nanocomposites without development of any colour in the nanocomposites.  相似文献   

15.
Polylactide/poly(ethylene terephthalate glycol) (PLA/PETG 80/20 wt) blends compatibilized with polylactide-g-maleic anhydride (PLA-g-MAH) were prepared by melt blending and the rheological, morphological and mechanical properties of the blends were studied. PLA/PETG (80/20 wt) blend formed a typical sea-island morphology, while upon compatibilization, the size and size distribution of the dispersed phase decreased significantly and the 3 wt% PLA-g-MAH compatibilized blend exhibited the smallest phase size and the narrowest distribution of the dispersed particles. The interfacial tension between PLA and PETG was determined from the morphological characteristics and the viscoelastic response of PLA/PETG blends via using two emulsion models. A minimum for PLA/PETG blend containing 3 wt% PLA-g-MAH was observed from both Palierne model and G–M model. The elongation-at-break increased by ∼320%, from 6.9% for PLA to 28.7% for the blend containing 3 wt% PLA-g-MAH without significant loss in the tensile modulus and tensile strength.  相似文献   

16.
In this work, acrylonitrile–butadiene rubber/expanded graphite compounds with initial fine dispersion of nanosize graphite were prepared by latex compounding method, and then the dispersion evolution of the graphite during subsequent mixing and vulcanization was carefully investigated by using rubber process analysis, X-ray diffraction and transmission electron microscopy. The results showed that a significant filler network was already formed in the initial compounds because of the nanoscale dispersion and the high width/thickness ratio of graphite even at a content of less than 5 phr. During shearing, the graphite dispersion evolution is strongly related to the initial filler network. The filler network as well as the dispersion could also be obviously altered by changing the curing pressure and temperature during vulcanization, suggesting that the initial fine dispersion of graphite in the rubber/graphite nanocomposites could be maintained by reducing shear and by curing at a higher temperature and at a lower pressure.  相似文献   

17.
《Materials Research Bulletin》2003,38(14):1867-1878
A novel in situ microfiber reinforced blend (MRB) based on poly(ethylene terephthalate) (PET) and polyethylene (PE) was prepared by extrusion-hot stretching-quenching process, and was compatibilized with ethylene vinyl acetate copolymer (EVA) in the presence of the transesterification reaction catalyst, dibutyltin oxide (DBTO). The effects of compatibilization on the essential work of fracture parameters in PET/PE MRB were examined. It is found that the specific essential work of fracture (we) and the specific non-essential work of fracture (wp) were significantly increased, when adding 1 and 2.5 phr of EVA to PET/PE MRB and it was further increased with the addition of 0.5 phr of DBTO as the catalyst of the transesterification reaction. The fracture surfaces study by scanning electron microscope (SEM) further proved that EVA is a successful compatibilizer for PET/PP blend. The morphology study of the blends shows that the well-defined fibers with the diameter of several microns were generated in situ during melt extrusion-hot stretch-quenching processing.  相似文献   

18.
Electrical resistivity, compressive strength, and the electromagnetic absorbing effectiveness of carbon black (CB) cement-based composites (CBCC) with different contents of high-structure CB were studied in this paper. The results indicate that the resistivity of CBCC versus the concentration of CB curves has typical features of percolation phenomena: CBCC in the percolation threshold zone contains 0.36–1.34 vol.% of CB. Thus, the conductive network can be formed in CBCC by using small amount of high-structure CB. Compressive strength of CBCC decreases with CB content increasing. Especially, compressive strength decreases substantially when CB content is more than 3.0 wt.%. CBCC exhibits good performance of absorbing electromagnetic waves in the frequency range of 8–26.5 GHz. For CBCC containing 2.5 wt.% of CB, the minimum reflectivity reaches ?20.30 dB. The frequency bandwidth in which the reflectivity is less than ?10 dB was from 14.9 GHz to 26.5 GHz. The filling of CB has improved the dielectric constant and the loss factor of the cement material remarkably. The loss factor of CBCC increases with the CB content increasing.  相似文献   

19.
In this work the rheological, physico-mechanical, thermal and morphology studies were performed on a blend of EPDM/SBR (ethylene propylene diene monomer/styrene butadiene rubber) (50/50) loaded with a new prepared core–shell pigment based on a core of zinc oxide which presents the major component of the prepared pigment (≈90%) covered with a shell of phosphate, this shell comprises only about (≈10%). The new pigments were added in different concentration to the rubber blend and were compared to blends pigmented with commercial zinc oxide and zinc phosphate. The results showed that the new pigments exhibited better rheometric, and physico-mechanical properties. In addition, these prepared pigments showed decrease of equilibrium swelling in toluene solvent and increase in crosslink density for EPDM/SBR blend. The efficiency of prepared core–shell pigments were also evaluated by studying the surface morphology (SEM) and thermal properties TGA (thermal gravimetric analysis). The prepared pigments loading of 10 phr (parts per hundred parts of rubber) showed the optimum properties of EPDM/SBR blend than rubber loaded with higher concentration of the commercial pigments, which indicated that the new core–shell pigment is more economic with better performance than commercial zinc oxide and phosphates individually.  相似文献   

20.
Silica nanoparticle reinforced poly (vinyl alcohol) cast sheets 40 μm thick were tested for mechanical and biological properties. The films were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The crystallinity decreased with increased silica content. Changes in the morphology and structure upon the addition of silica suggest the formation of cross-linking. The modulus increased from 300 MPa for PVA to 7.2 GPa for 120 wt.% silica nanoparticle in the blend and the tensile strength increased from 3.5 MPa to 35 MPa. The modulus estimated using dynamic tests, tensile tests, and nanoindentation was comparable and was predicted well using the Halpin-Tsai's equation. The nanocomposites were an order of magnitude tougher than the pure polymer. Silica based nanocomposite was also found to be an excellent template for the deposition of calcium hydroxyapatite when immersed in simulated body fluid. The modulus and tensile strength of apatite coated silica nanoparticle (120 wt.%)–PVA composite increased to 11 GPa and 65 MPa respectively, close to that of cortical bone. The results represent one of the largest increases in mechanical properties of nanocomposite mimicking the properties of human bone. The addition of silica can also aid in osseointegration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号