首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The deactivation of a commercial type V2O5-WO3-TiO2 monolith catalyst under biomass combustion was studied at a full-scale grate-fired power plant burning straw/wood using a slip stream pilot scale reactor. The aerosols in the flue gas consisted of a mixture of potassium chloride and sulphate. Three catalyst elements were exposed at 350 °C, and one element was exposed at 250 °C for comparison. The catalyst activity was measured in the reactor at the exposure temperature by addition of NH3 and extra NO. The activity, in terms of a first-order rate constant, dropped by 52% after about 1140 h indicating a very fast deactivation compared to coal firing. It was also found that the reactor temperature was not of importance for the deactivation rate. SEM-EDX analysis showed that particle deposition and pore blocking contributed to the deactivation by decreasing the diffusion rate of NO and NH3 into the catalyst. However, potassium also penetrated into the catalyst wall and the resulting average K/V ratio in the catalyst structure was high enough (about 0.3–0.5) for a significant chemical deactivation. Chemisorption studies carried out in situ showed that the amount of chemisorbed NH3 on the catalyst decreased as a function of exposure time, which reveals that Brøndsted acid sites had reacted with potassium compounds and thereby rendered inactive. When washed by 0.5 M H2SO4 the regenerated catalyst regains a higher activity than that of the fresh catalyst at temperatures higher than 300 °C, but even though reactivation is possible, the deactivation rate appears too high for practical use of the SCR process in straw combustion.  相似文献   

2.
Gas-phase elemental mercury capture by a V2O5/AC catalyst   总被引:3,自引:0,他引:3  
Gas-phase elemental mercury (Hg0) capture by an activated coke (AC) supported V2O5 (V2O5/AC) catalyst was studied in simulated flue gas and compared with that by the AC. The study on the influences of V2O5 loading, temperature, capture time and flue gas components (O2, SO2, H2O and N2) shows that the Hg0 capture capability of V2O5/AC is much higher than that of AC. It increases with an increase in V2O5 loading and is promoted by O2, which indicates the important role of V2O5 in Hg0 oxidation and capture; it is promoted slightly by SO2 but inhibited by H2O; it increases with an increase in temperature up to 150 °C when Hg desorption starts. X-ray photoelectron spectroscopy analysis and sequential chemical extraction experiments indicate that the main states of Hg captured on V2O5/AC are HgO and HgSO4. Temperature programmed desorption experiments were also made to understand the stability of the Hg captured.  相似文献   

3.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

4.
V2O5/AC has been reported to be active for selective catalytic reduction (SCR) of NO with NH3 at around 200 °C and resistant to SO2 deactivation. To elucidate its SCR mechanism, adsorption and oxidation of NH3 over V2O5/AC are studied in this paper using TG, MS and DRIFTS techniques. It is found that the adsorption and oxidation of NH3 take place mainly at VO bond of V2O5. A higher V2O5 loading results in more NH3 adsorption on the catalyst. V2O5 contains both Brnsted and Lewis acid sites; NH4+ on Brnsted acid sites is less stable and easier to be oxidized than NH3 on Lewis acid sites. Gaseous O2 promotes interaction of NH3 with AC and oxidation of NH3 over V2O5/AC. NH3 is oxidized into NH2 and acylamide structures and then to isocyanate species, which is an intermediate for N2 formation.  相似文献   

5.
Selective oxidation of methanol to dimethoxymethane (DMM) was conducted in a fixed-bed reactor over an acid-modified V2O5/TiO2 catalyst. The influence of the acid modification on its structure, redox and acidic properties, and catalytic performance for methanol oxidation were investigated. The results indicated that the content of vanadia in the catalyst exhibits a vital influence on the dispersion of vanadium species, while the acid modification can enhance its surface acidity. Proper amounts of the acid (W() = 15%) and V2O5 (W(V2O5) = 15%) components loaded in the acid-modified V2O5/TiO2 catalyst are able to build a bi-functional circumstance that is favorable for the formation of DMM with high activity and selectivity. As a result, for the selective oxidation of methanol, the H2SO4-modified V2O5/TiO2 catalyst gives a much higher DMM yield at 150 °C than the unmodified one.  相似文献   

6.
The effects of V2O5, NiO, Fe2O3 and vanadium slag on the corrosion of Al2O3 and MgAl2O4 have been investigated. The specimens of Al2O3 and MgAl2O4 with the respective oxides above mentioned were heated at 10 °C/min from room temperature up to three different temperatures: 1400, 1450 and 1500 °C. The corrosion mechanisms of each system were followed by XRD and SEM analyses. The results obtained showed that Al2O3 was less affected by the studied oxides than MgAl2O4. Alumina was only attacked by NiO forming NiAl2O4 spinel, while the MgAl2O4 spinel was attacked by V2O5 forming MgV2O6. It was also observed that Fe2O3 and Mg, Ni, V and Fe present in the vanadium slag diffused into Al2O3. On the other hand, the Fe2O3 and Ca, S, Si, Na, Mg, V and Fe diffused into the MgAl2O4 structure. Finally, the results obtained were compared with those predicted by the FactSage software.  相似文献   

7.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

8.
9.
V2O5 was loaded on the surface of C-doped TiO2 (C-TiO2) by incipient wetness impregnation in order to enhance the visible light photocatalytic performance. The physicochemical properties of the C-TiO2/V2O5 composite were characterized by XRD, Raman, TEM, XPS, UV–vis diffuse reflectance spectra, and PL in detail. The result indicated that a heterojunction between C-TiO2 and V2O5 was formed and the separation of excited electron–hole pairs on C-TiO2/V2O5 is greatly promoted. Thus, this composite photocatalyst exhibited enhanced visible light photocatalytic activity in degradation of gas-phase toluene compared with the pristine C-TiO2.  相似文献   

10.
Spinel nano-Co3O4 was prepared by solid-state reaction at room temperature and investigated for selective catalytic reduction of NOx by NH3 (NH3-SCR). Although suffering from pore filling and plugging, treatment of this catalyst by SO2 showed novel promoting effect on NH3-SCR above 250 °C. Bulk cobalt sulfate was observed over the sulfated Co3O4 with XRD, which would be an active component for NH3-SCR. The sulphated Co3O4 catalyst exhibited good resistance to SO2 (500 ppm, 100 ppm) and 10% H2O at a space velocity of about 25 000 h−1 at 300 °C, as tested for 12 h.  相似文献   

11.
This research investigated how the physical and chemical properties of Pt/TiO2-based catalysts with high activity in SCR reaction are affected by the preparation conditions (type of TiO2, Pt content and calcination temperature) using XRD, BET and TPR analysis. The catalyst preparation conditions that achieve optimum reactivity were identified by examination of how the physical and chemical properties relate to catalytic activity. According to the results, Pt content over 2 wt% causes a phenomenon in which Pt agglomeration increases linearly according to the surface area of the limited support. However, Pt content over 3 wt% showed an increase in reducibility in the low temperature region that is proportional to the absolute amount of Pt has increased. Moreover, although increased calcination temperature did not result in phase transition of the TiO2 support, it did lead to reduction of the surface area by increasing crystallinity and sintering of Pt.  相似文献   

12.
The effect of SO2 for the selective reduction of NO by C3H8 on Ag/Al2O3 was investigated in the presence of excess oxygen and water vapor. The NOx conversion decreased permanently even in the presence of a low concentration of SO2 (0.5–10 ppm) at <773 K. The increase in SO2 concentration resulted in a large decrease in NOx conversion at 773 K. However, when the reaction temperature was more than 823 K, the activity of Ag/Al2O3 remained constant even in the presence of 10 ppm of SO2. The sulfate species formed on the used Ag/Al2O3 were characterized by a temperature programmed desorption method. The sulfated species formed on silver should mainly decrease the deNOx activity on the Ag/Al2O3. The sulfated Ag/Al2O3 was appreciably regenerated by thermal treatment in the deNOx feed at 873 K. The moderate activity remains at 773 K in the presence of 1 ppm SO2 for long time by the heat treatment at every 20 h intervals.  相似文献   

13.
In this work, two materials for secondary lithium battery cathodes formed by polyaniline-V2O5 and sulfonated polyaniline-V2O5, which have a higher charge capacity than the V2O5 xerogel, were synthesized. X-ray absorption and Fourier transform infrared spectroscopies were employed to analyze the short-range interactions in these materials. Based on these experiments, it was possible to observe significant differences in the symmetry of the VO5 units, and this was attributed to the intimate contact between V2O5 and the polymers, and to some flexibility of the VO5 square pyramids due to the low range order of the nanocomposites.  相似文献   

14.
Phase pure V2O3 micro-crystals with a hexagonal dipyramid morphology were fabricated for the first time via a facile one-step hydrothermal method. The crystals were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and differential scanning calorimetry (DSC). A hexagonal dipyramid structure of V2O3 enclosed by well-grown {012} facets was obtained by hydrothermally reducing VO(acac)2 precursor with N2H4·H2O at 220 °C for 48 h. The results indicated that V2O3 can be well crystallized up to micron size with distinguished facets by only one step hydrothermal treatment. The formation mechanism and morphology evolution for V2O3 micro-crystals were discussed. Based on our experiments, the V2O3 nuclei formed and grew by a phase transformation through a dissolution–recrystallization process of VOOH, and the formation of the hexagonal dipyramids was ascribed to the specific adsorption of Hacac to the {012} facets restraining the growth in the directions normal to the {012} facets. The present work provides a facile method for preparing phase pure V2O3 micro-crystals with hexagonal dipyramid morphology, which can be used as a new powder material for ceramic fabrication.  相似文献   

15.
Bismuth oxide in δ-phase is a well-known high oxygen ion conductor and can be used as an electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). 5-10 mol% Ta2O5 are doped into Bi2O3 to stabilize δ-phase by solid state reaction process. One Bi2O3 sample (7.5TSB) was stabilized by 7.5 mol% Ta2O5 and exhibited single phase δ-Bi2O3-like (type I) phase. Thermo-mechanical analyzer (TMA), X-ray diffractometry (XRD), AC impedance and high-resolution transmission electron microscopy (HRTEM) were used to characterize the properties. The results showed that holding at 800-850 °C for 1 h was the appropriate sintering conditions to get dense samples. Obvious conductivity degradation phenomenon was obtained by 1000 h long-term treatment at 650 °C due to the formation of α-Bi2O3 phase and Bi3TaO7, and 〈1 1 1〉 vacancy ordering in Bi3TaO7 structure.  相似文献   

16.
In this paper a global reaction kinetic model is used to understand and describe the NOx storage/reduction process in the presence of CO2 and H2O. Experiments have been performed in a packed bed reactor with a Pt–Ba/γ-Al2O3 powder catalyst (1 wt% Pt and 30 wt% Ba) with different lean/rich cycle timings at different temperatures (200, 250, and ) and using different reductants (H2, CO, and C2H4). Model simulations and experimental results are compared. H2O inhibits the NO oxidation capability of the catalyst and no NO2 formation is observed. The rate of NO storage increases with temperature. The reduction of stored NO with H2 is complete for all investigated temperatures. At temperatures above , the water gas shift (WGS) reaction takes place and H2 acts as reductant instead of CO. At , CO and C2H4 are not able to completely regenerate the catalyst. At the higher temperatures, C2H4 is capable of reducing all the stored NO, although C2H4 poisons the Pt sites by carbon decomposition at . The model adequately describes the NO breakthrough profile during 100 min lean exposure as well as the subsequent release and reduction of the stored NO. Further, the model is capable of simulating transient reactor experiments with 240 s lean and 60 s rich cycle timings.  相似文献   

17.
The sintering behaviors and microwave dielectric properties of the 16CaO–9Li2O–12Sm2O3–63TiO2 (abbreviated CLST) ceramics with different amounts of V2O5 addition had been investigated in this paper. The sintering temperature of the CLST ceramic had been efficiently decreased by nearly 100 °C. No secondary phase was observed in the CLST ceramics and complete solid solution of the complex perovskite phase was confirmed. The CLST ceramics with small amounts of V2O5 addition could be well sintered at 1200 °C for 3 h without much degradation in the microwave dielectric properties. Especially, the 0.75 wt.% V2O5-doped ceramics sintered at 1200 °C for 3 h have optimum microwave dielectric properties of Kr = 100.4, Q × f = 5600 GHz, and TCF = 7 ppm/°C. Obviously, V2O5 could be a suitable sintering aid that improves densification and microwave dielectric properties of the CLST ceramics.  相似文献   

18.
S?awomir Ku? 《Fuel》2003,82(11):1331-1338
The catalytic performance in oxidative coupling of methane (OCM) of unmodified pure La2O3, Nd2O3, ZrO2 and Nb2O5 has been investigated under various conditions. The results confirmed that the activity of La2O3 and Nd2O3 was always much higher than that of the remaining two. The surface basicity/base strength distribution of pure La2O3, Nd2O3, ZrO2 and Nb2O5 was measured using a test reaction of transformation of 2-butanol and a temperature-programmed desorption of CO2. Both methods showed that La2O3 and Nd2O3 had high basicity and contained medium and strong basic sites (lanthanum oxide more and neodymium oxide somewhat less). ZrO2 had only negligible amount of weak basic sites and Nb2O5 was rather acidic. The confrontation of the basicity and catalytic performance indicated that in the case of investigated oxides, the basicity (especially strong basic sites) could be a decisive factor in determination of the catalytic activity in OCM. Only in the case of ZrO2 it was observed a moderate catalytic performance in spite of negligible basicity. The influence of a gas atmosphere used in the calcination of oxides (flowing oxygen, helium and nitrogen) on their basicity and catalytic activity in OCM had been also investigated. Contrary to earlier observations with MgO, no effect of calcination atmosphere on the catalytic performance of investigated oxides in OCM and on their basicity was observed.  相似文献   

19.
Fine particles of anatase were suspended in solutions of ammonium alum with Al2O3/TiO2 molar ratios from 0.1:1 to 7:1. By spray drying the suspensions and calcining the spray-dried powders, Al2O3-TiO2 composite particles were obtained. The results show that after the spray drying, coatings of ammomium alum are formed on the surface of the anatase particles, leading to composite precursor powders (CCPs) with larger particle sizes. Upon calcining the CCPs, ammomium alum pyrolyzes to amorphous Al2O3 and anatase transforms into rutile. Both are mainly responsible for the observed particle size reductions as well as the densification of each composite particle. The in-situ formed α-Al2O3 and rutile may have higher reactivities, forming aluminum titanate at 1150 °C, about 130 °C lower than the theoretical temperature for the formation of Al2TiO5 by solid reaction. The reaction between α-Al2O3 and rutile starts from the interface between the anatase and the alum coating and mainly takes place in the single particles formed by spray drying. The molar ratio of Al2O3 to TiO2 influences the final crystalline phases in the composite powders, but not stoichiometrically.  相似文献   

20.
A series of cerium modified MnOx/TiO2 catalysts were prepared by sol–gel method and used for low-temperature selective catalytic reduction (SCR) of NOx with ammonia. The experimental results showed that NO conversion could be improved by doping Ce from 39% to 84% at 80 °C with a gas hourly space velocity (GHSV) of 40,000 h−1. This activity improvement may be contributed to the increase of chemisorbed oxygen and acidity after Ce doping. TPR results also verified that the redox property of Ce modified MnOx/TiO2 was enhanced at low-temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号