首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three capacitive humidity sensors developed for a portable clinical application are presented and compared. The first structures consist of interdigitated electrodes covered by a polyimide sensitive layer. The second structures have the same geometry but include a benzocyclobutene sensitive layer and a heating. resistor. The third structure has been developed with a new geometry, with the electrodes being stacked. Humidity measurement results are presented, in particular sensor response time in absorption that must be very small (less than 500 ms). The influence of the heating on the response time is described. In conclusion, the three sensors are compared and the most suitable structure for our application is indicated. Although polyimide has been widely used for realization of capacitive humidity sensors, we demonstrate here that it is not the best sensitive material for our application  相似文献   

2.
Capacitive Sensor Interface for an Electrostatically Levitated Micromotor   总被引:1,自引:0,他引:1  
This paper presents the design and performance of a capacitive sensor interface dedicated to a microelectromechanical systems (MEMS) micromotor electrically levitated in five DOFs. The position and orientation of the rotor are detected by measuring differential rotor-electrode capacitances with a set of capacitance-to-voltage converters (CVCs). The sensor contains multiplexed electrodes for both capacitive sensing and force feedback, and a set of common electrodes for carrier exciting with an aim to eliminate ohmic connection with the levitated rotor. The proposed interface circuit is based on a symmetrical structure containing two half ac bridges, more robust against parasitic capacitances, capable of detecting capacitance changes with frequency higher than 10 kHz, and able to decouple multiaxis position signals of a levitated rotor. An electronic equivalent model of the sensing circuit has been developed and used to analyze the sensor performance. The major nonidealities and their effects on the accuracy of the position sensing are discussed. The performance of the sensing circuit was experimentally investigated on a prototype interface circuit. The experimental results confirm the principles of operation and the performance of the interface for the multiaxis levitated devices using capacitive position sensors.  相似文献   

3.
L. Juhász  J. Mizsei 《Thin solid films》2009,517(22):6198-340
Our aim was to produce a cheap, reliable, low-power and CMOS-MEMS process compatible relative humidity (RH) capacitive sensor that can be incorporated into a state-of-the art wireless sensor network. Porous alumina, produced by electrochemical oxidation of aluminum thin film under anodic bias (AAO, Anodic Aluminum Oxide) was used for the purpose of the sensing layer. We prepared two different capacitive sensor structures on silicon substrate using semiconductor processing steps and anodic oxidation in addition. The first sensor has an ultra-thin, vapor-permeable palladium upper electrode, while in the second case, an electroplated gold-grid is used for the same purpose. The highest achieved average sensitivity is approx. 15 pF/RH%, which is much higher than the values found in product catalogues of discrete, off-the-shelf capacitive humidity sensors (0.2-0.5 pF/RH%).  相似文献   

4.
In this paper, the theory for tracking the average molecular orientation of a liquid crystal (LC) material via capacitive sensing of anisotropic media is presented. The candidate LC sensor structure utilizes interdigital electrodes. Two capacitive measurements in orthogonal direction can track the director axis of nematic LC material in a homogenous ordered LC film. The sensitivity for the sensor at different alignments is studied. The candidate sensors have been fabricated and experimentally verified. Both experimental and calculated values for capacitances of selected interdigital fingers sensor structures are presented.  相似文献   

5.
This paper presents an easy-to-design interface circuit to measure very small-percentage capacitance variations in capacitive sensors, especially suitable for industrial measurements. A computer-controlled 24-bit A/D converter is employed to obtain a higher resolution. This interface circuit can be used with various types of capacitive sensors. The most interesting thing is, that the measurement results through this interface circuit are independent of the initial capacitance of the sensor. In addition, the double differential operating principle used here minimizes the error caused by coupling and stray capacitance of sensor probes. The operating principle of the designed interface circuit, the major assumptions made, test data, and possible future developments are discussed  相似文献   

6.
碳化硅材料由于其优良的电学、机械和化学特性,在开发适用于高温恶劣环境下的压力传感器等领域,有着广阔的应用前景,逐渐为人们所重视。简单介绍了碳化硅的材料特性,阐述了国外碳化硅高温压力传感器的最新发展成果,比较了电容式、压阻式和光学结构压力传感器的结构、特点,总结了我国碳化硅压力传感器发展问题与挑战。  相似文献   

7.
Strengthening and repairing infrastructure with fiber-reinforced polymers while achieving low-cost, real-time monitoring of cracks in engineering structures is highly challenging. Herein, a piezoelectric glass-fiber-reinforced polymer (piezo-GFRP) sensor is used to monitor the mechanical behavior of cement beams with cracks under cyclic bending. The output voltage and frequency of the sensor are shown to be effective feedback signals for determining the mechanical behavior. The thin piezo-GFRP sensor shows sufficient piezoelectric sensitivity to monitor the slight variations in the mechanical behavior of the cement beams during the early stages of cracking. It is indicated in this result that such sensors have the potential for the multifunctional structural health monitoring of engineering structures.  相似文献   

8.
为研究湿敏电容传感器的稳定性特征,利用14支湿敏电容传感器静态测试数据,用误差年漂移量定量表征湿敏电容传感器的稳定性,并对误差年漂移量的变化规律及影响因素进行分析。结果表明,湿敏电容传感器的稳定性受温度、温度和湿度的交互作用以及厂家制造水平的影响,低温时稳定性较差;室温时稳定性随湿度升高而降低。经过一年的使用,78.6%的湿敏电容传感器无法满足技术指标要求。  相似文献   

9.
Achieving an innovative integrated sensor fusion architecture with a robust vehicle navigation and localization using an extended Kalman filter, interval analysis and covariance intersection that can overcome the uncertainty in the system model and sensor noise statistics. There are various approaches to the problem, but here the focus is on an approach which can guaranteed performance of sensor-based navigation. The guaranteed performance is quantified by explicit bounds of position estimate of a ground vehicle. Ground vehicles generally carry dead reckoning sensors such as wheel encoders and inertial sensors, to measure acceleration and angle rate, while obstacle detection and mapmaking is done with time-of-flight ultrasonic sensors. Most of these sensors give overlapping or complementary information and sometimes are redundant as well, which offers scope for exploiting data fusion. The purpose here is to achieve data fusion for ground vehicles with low-cost sensors by forming an intelligent sensor system. This is accomplished by combining the sensors' measurements and processing these measurements with data fusion algorithms. The algorithms are complementary in the sense that they compensate for each other's limitations, so that the resulting performance of the sensor system is better than its individual components.  相似文献   

10.
Resonant passive sensors composed by resistive, inductive, and capacitive (RLC) simple sensors are widely used in biotelemetric systems. In this paper, a novel method to read remotely these RLC sensors is presented. The developed method is based on the simultaneous application of three excitation signals of same amplitudes, set at different frequencies, to determine remotely the RLC sensor resonance frequency and quality factor . Theoretical analysis and experimental results are also presented.  相似文献   

11.
Perovskite oxides like SrTiO3 at the nanoscale are of interest for emerging applications,including high-k dielectrics and sensors.However,their synthesis requires long calcination at the elevated temperature,which is a barrier of their application to flexible electronics.Here,an effective laser-assisted sol-gel method to patternably produce SrTiO3 nanoparticles (-100 nm) in selective areas on polyimide substrates (coated with ITO) is introduced.Importantly,the violet-laser power is just 1 W but sufficient to crystallize the material in a short period (a few seconds).Furthermore,developing a flexible device platform using carbon nanotubes (CNT) and SrTiO3 nanoparticles for detection of humidity changes at room temperature is proposed.The sensor platform has both capacitive and resistive sensing abilities.The resistive mode with a lower power usage (about 0.2 μW) is suitable for long monitoring of humidity in the range of 2% RH and above.The capacitive mode with higher sensitivity,faster response/recovery time (1-3 min),and lower detection limit (0.5% RH) can be used for calibration purposes.The performance of the flexible sensor is still maintained after 5000 bending cycles at 1.5-cm radius.Altogether,our synthesis method and the flexible sensor show chances for mass-producing perovskite oxides at low cost for wearable electronics.  相似文献   

12.
Wrinkles, porosity, delaminations and other defects introduced during the manufacturing processing can compromise mechanical performance of advanced composites. This paper describes a method of using fiber optic sensors for monitoring the formation of graphite fiber bending in real time during manufacturing process. Theoretical formulation of the sensor behavior and experimental results are presented. The response of the sensor to composite fiber bending is characterized. The application to analyzing the formation of wrinkles in compression molding of graphite/epoxy composites is demonstrated.  相似文献   

13.
《IEEE sensors journal》2008,8(9):1557-1564
This paper presents the capacitive transduction technique involved with liquid crystal (LC) based sensors in partially disordered systems. These sensors have the potential applications in chemical and biological systems. The theory for tracking the average molecular deformation (state of alignment) and degree of ordering of anisotropic and partially disordered LC film via capacitive sensing is investigated. This system is modeled using the Q-tensor approach in modeling uniaxial LC material. The proposed sensor design is an interdigitated electrodes structure. Transverse and fringing capacitances as function of the molecular deformation are calculated. It is verified that three capacitance measurements are required to track the average molecular orientation and the degree of disorder in the LC film. The sensitivity for the sensor at different alignments and ordering degree is also studied. Toward practical sensor, neuro-fuzzy system is modeled to simulate the capacitive transduction and to monitor the LC profile. Sensors are fabricated and tested. Both the experimental and calculated capacitances are presented and compared.   相似文献   

14.
New details on selectivity and sensitivity of fully integrated CMOS-based capacitive chemical microsensor systems are revealed. These microsystems have been developed to detect volatile organics in ambient air and rely on polymeric sensitive layers. The sensitivity and selectivity changes induced by thickness variation of the sensitive polymer layer allow for tuning of the layer parameters to achieve desired sensor features. Cross-sensitivity to interfering agents can be drastically reduced, as is shown for two important cases: (a). rendering the capacitive sensor insensitive to a low-dielectric-constant analyte (lower than that of the polymer) and (b). reducing the influence of a high-dielectric-constant analyte, such as water, on the sensor response. The second case is of vital importance for capacitive sensors, since water is omnipresent and evokes large capacitive sensor signals. The thickness-induced selectivity is explained as a combination of dielectric constant change and swelling and has been confirmed by measurements. Experimentally determined sensitivities qualitatively and quantitatively coincide with the calculated values implying understanding of the sensing mechanism.  相似文献   

15.
Gas detection and monitoring are essential due to their direct impact on human health, environment, and ecosystem. Chemiresistive sensors are one of the most used classes of sensors for monitoring and measurement of gases thanks to their ease of fabrication, customizability, mechanical flexibility, and fast response time. While chemiresistive sensors can offer good sensitivity and selectivity to a particular gas in a controlled environment with known interferences, they may not be able to differentiate between various gases having similar physiochemical properties under uncontrolled conditions. To address this shortcoming of chemiresistive gas sensors, sensor arrays have been the subject of recent studies. Gas sensor arrays are a group of individual gas sensors that are arranged to simultaneously detect and differentiate multiple cross-reactive gases. In this regard, various sensor array technologies have been developed to differentiate a given set of gases using multivariate algorithms. This review provides an insight into the different algorithms that are used to extract the data from the sensor arrays, highlighting the fabrication techniques used for developing the sensor array prototypes, and different applications in which these arrays are used.  相似文献   

16.
朱高林  肖遥剑  赵浩  冯浩 《计量学报》2021,42(4):432-437
采用峰谷互补方法对永磁无刷直流电动机的脉动转矩进行抑制时,2台电机脉动转矩波形的对称性和正弦性与抑制效果密切相关,而位置传感器的精度直接影响电机脉动转矩的波形特性.基于此,首先通过实验测定了2种位置传感器在电机运行时其输出信号的相位差、占空比和响应速度,并进行了分析.然后搭建实验平台测定了电机在2种位置传感器工况下脉动...  相似文献   

17.
用醇还原法制备长径比约为800的银纳米线(AgNWs)并分散成网状结构,用溶液流延法使用聚偏氟乙烯(PVDF)和不同质量分数的聚氨酯(TPU)制备柔韧性PVDF/TPU复合薄膜,然后将AgNWs网固定在PVDF/TPU柔性薄膜的表面作为电容的极板制备出柔性薄膜电容式传感器.用扫描电子显微镜(SEM)、紫外-可见光谱和X...  相似文献   

18.
New electric-field measuring equipment was constructed. The electric-field distribution was obtained from potential distribution measured by a single capacitive probe through numerical calculation by a microcomputer. The single capacitive probe was fabricated with the technique of vacuum evaporation of aluminum and SiO. The electric-field distribution under acoustoelectric current oscillated state in CdS was measured. The electric-field distribution measured by the present method was compared with that obtained by the time derivative of potential.  相似文献   

19.
This paper presents analytical and experimental studies of a new microelectromechanical system (MEMS) smart flow sensor for the measurement of gas flow. The flow sensor has an array of curved-up cantilever beams that are surface-micromachined with two layers of deposition under two sets of different process parameters. The differential residual stress between the two layers of the polysilicon deposition causes the beams to curve upward from the substrate surface when the sacrificial layer is released. Each beam of the array of beams of different lengths vibrates successively as the flow rate increases, enabling more accurate sensing and identification of range of flow rates based on the vibration characteristics, thus making this a smart sensor design. Design and fabrication of these sensors are discussed. Experiments were conducted on this MEMS flow sensors to characterize the deflection of the curved cantilever beams with respect to flow rates. In addition, backflow tests were also conducted separately. Results of the analytical study are presented to investigate the cause of vibration of beams when subjected to flow. Finite-element analyses of vibration of the sensors comply with the experimental observation. Based on the analysis of fundamental natural frequencies, possible arrangement for the distribution of lengths of the beams is proposed to enhance its functionality as a sensor. Future work and plan of the on-board capacitive metrology and other practical issues are discussed  相似文献   

20.
Peters KJ  Washabaugh PD 《Applied optics》1995,34(22):4993-5002
Frequently, when designing a structure to incorporate integrated sensors, one sacrifices the stiffness of the system to improve sensitivity. However, the use of interferometric displacement sensors that tessellate throughout the volume of a structure has the potential to allow the precision and range of the component measurement to scale with the geometry of the device rather than the maximum strain in the structure. The design of stiff structures that measure all six resultant-load components is described. In addition, an advanced torsion sensor and a linear acceleration transducer are also discussed. Finally, invariant paths are presented that allow the in situ integrity of a structural volume to be monitored with a single pair of displacement sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号