首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we propose a quantum private comparison scheme which can be used in decoherence noise scenario. With the combination of decoherence-free states and error-correcting code, it achieves a fault tolerant quantum private comparison to prevent collective decoherence noise and limited other decoherence noise. And the third party used in the protocol is not needed to be semi-honest.  相似文献   

2.
We consider an ensemble of quantum systems described by a density matrix, solution of a Lindblad-Kossakowski differential equation. We focus on the special case where the decoherence is only due to a highly unstable excited state and where the spontaneously emitted photons are measured by a photo-detector. We propose a systematic method to eliminate the fast and asymptotically stable dynamics associated with the excited state in order to obtain another differential equation for the slow part. We show that this slow differential equation is still of Lindblad-Kossakowski type, that the decoherence terms and the measured output depend explicitly on the amplitudes of quasi-resonant applied field, i.e., the control. Beside a rigorous proof of the slow/fast (adiabatic) reduction based on singular perturbation theory, we also provide a physical interpretation of the result in the context of coherence population trapping via dark states and decoherence-free subspaces. Numerical simulations illustrate the accuracy of the proposed approximation for a 5-level systems.   相似文献   

3.
We propose a Lyapunov-based control approach for state transfer based on the decoherence-free target state.The expected target state is constructed to be a decoherence-free state in a decoherence-free subspace(DFS) by an external laser fieldⅠ,so that the system state can be decoupled from the environment,and no more decoherence process will occur.With the decoherence-free target state,we design a Lyapunov-based control fieldⅡto steer the given initial state to the decoherence-free state of open quantum systems as completely as possible,and decouple the system state from the environment at the same time.In the end,it is verified that the state transfer control designed comes true on a∧-type four-level atomic system,and the system can stay on the decoherence-free target state without coupling to environment.  相似文献   

4.
本文探讨了把量子广义测量和无消相干子空间 (DFS) 结合起来抑制消相干的潜力. 证实了: 把量子广义子空间投影测量 (QGSPM) 和量子广义分类投影测量 (QGCPM) 与 DFS 算子条件结合起来, 可以有效增强 Markovian 和非 Markovian 量子开放系统抑制消相干的能力. 强调了量子测量可以作为操控量子态的重要手段. 本方法的优点在于可以构造性地设计相干控制哈密顿量.  相似文献   

5.
Enhancing the fidelity of quantum state transmission in noisy environments is a significant subject in the field of quantum communication. In this paper, improving the fidelity of a deterministic remote state preparation (RSP) protocol under decoherence is investigated with the technique of weak measurement (WM) and weak measurement reversal (WMR). We first construct the quantum circuit of the deterministic remote preparation of a single-qubit state through an EPR state with the assistance of an auxiliary qubit. Then, we analytically derive the average fidelity of the deterministic RSP protocol under the influence of generalized amplitude damping noises acting on the EPR state. Our results show that when only qubit 2 undergoes the decoherence channel, the average fidelity of the RSP protocol subject to generalized amplitude damping noise is the same as that subject to amplitude damping noise. Moreover, we analyze the optimal average fidelity of the above RSP process by introducing WM and WMR. It is found that the application of WM and a subsequent reversal operation could lead to the remarkable improvement of the average fidelity for most values of the decoherence parameters.  相似文献   

6.
We propose two schemes to generate three-qubit decoherence-free state for atoms trapped in a cavity via quantum Zeno dynamics. The influence of various decoherence processes such as spontaneous emission and photon loss on the fidelity of the entangled state is investigated. Numerical results show that the schemes are robust against the cavity decay since the evolution of the system is restricted to a subspace with null-excitation cavity fields. Moreover, no measurement, post selection and auxiliary bits are needed during the whole process.  相似文献   

7.
We propose a combined atom–molecule system for quantum information processing in individual traps, such as provided by optical lattices. In this platform, different species of atoms—one atom carrying a qubit and the other enabling the interaction—are used to store and process quantum information via intermediate molecular states. We show how gates, initialization, and readout operations could be implemented using this approach. In particular, we describe in some detail the implementation of a two-qubit phase gate in which a pair of atoms is transferred into the ground rovibrational state of a polar molecule with a large dipole moment, thus allowing atoms transferred into molecules to interact via their dipole-dipole interaction. We also discuss how the reverse process could be used as a non-destructive readout tool of molecular qubit states. Finally, we generalize these ideas to use a decoherence-free subspace for qubit encoding to minimize the decoherence due to magnetic field fluctuations. In this case, qubits will be encoded into field-insensitive states of two identical atoms, while a third atom of a different species will be used to realize a phase gate.  相似文献   

8.
Non-adiabatic holonomic quantum gate in decoherence-free subspaces is of greatly practical importance due to its built-in fault tolerance, coherence stabilization virtues, and short run-time. Here, we propose some compact schemes to implement two- and three-qubit controlled unitary quantum gates and Fredkin gate. For the controlled unitary quantum gates, the unitary operator acting on the target qubit is an arbitrary single-qubit gate operation. The controlled quantum gates can be directly implemented by utilizing non-adiabatic holonomy in decoherence-free subspaces and the required resource for the decoherence-free subspace encoding is minimal by using only two neighboring physical qubits undergoing collective dephasing to encode a logical qubit.  相似文献   

9.
No cloning distinguishes the quantum cryptography. Buzek and Hillery have developed a universal quantum cloning machine that allows providing two copies of an arbitrary qubit state with the same accuracy independently of the input-state. The fidelity has been used as a criterion to characterize the cloning. It was found that this parameter can achieve 0.85 for special subsets of quantum states, i.e, equatorial qubits. In the present paper, we investigate the effects of a magnetic field environment as a perturbation of the cloning process. The quantum copying machines studied consist of UQCM-BH and UQCM-PC. Results have been discussed using both the fidelity and the relative entropy. Much attention has been paid to the magnetic field-related decoherence of ancillary qubits before preparation. An attempt to explain the impact of this decoherence on the performance of copying machines will be presented.  相似文献   

10.
We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger–Horne–Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system–environment interaction and the system–environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.  相似文献   

11.
By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from \(|2\rangle \) to \(|1\rangle \). This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.  相似文献   

12.
Two modified measurement-device-independent quantum key distribution protocols based on the decoherence-free subspace are presented in this study. The proposed protocols are tolerant of the fault with collective-rotation noise and collective-dephasing noise. Exploiting the logical qubits comprised by two pairs of entanglement photons in decoherence-free subspace states, the mutually unbiased bases are formed by introducing the spatial degrees of freedom which reduces the experiment difficulty. There are only Bell-state preparation and collective Bell-state measurement needed in our protocols. Moreover, a brief discussion on the security of the proposal in the communication process is given.  相似文献   

13.
Different from the previous works on generating entangled states, this work is focused on how to transfer the prepared entangled states onto memory qubits for protecting them against decoherence. We here consider a physical system consisting of n operation qubits and 2n memory qubits placed in a cavity or coupled to a resonator. A method is presented for transferring n-qubit Greenberger–Horne–Zeilinger (GHZ) entangled states from the operation qubits (i.e., information processing cells) onto the memory qubits (i.e., information memory elements with long decoherence time). The transferred GHZ states are encoded in a decoherence-free subspace against collective dephasing and thus can be immune from decoherence induced by a dephasing environment. In addition, the state transfer procedure has nothing to do with the number of qubits, the operation time does not increase with the number of qubits, and no measurement is needed for the state transfer. This proposal can be applied to a wide range of hybrid qubits such as natural atoms and artificial atoms (e.g., various solid-state qubits).  相似文献   

14.
基于相干控制的二能级量子系统退相干抑制   总被引:3,自引:0,他引:3  
张靖  李春文 《控制与决策》2006,21(5):508-512
对于二能级开放量子系统,研究了利用相干控制抑制退相干效应的问题.首先讨论了二能级开放量子系统在相干控制下的建模问题,将退相干抑制归结为与环境噪声解耦的控制问题.然后,引入开环控制抑制退相干,并证明该控制可使系统状态中的部分分量与环境噪声渐近解耦.最后引入反馈控制,使得系统状态的相应分量可以与环境精确解耦,同时能够避免测量引入的量子噪声的影响.  相似文献   

15.
We present a new scheme to provide an arbitrary four-photon polarization-entangled state, which enables the encoding of single logical qubit information into a four-qubit decoherence-free subspace robustly against collective decoherence. With the assistance of the cross-Kerr nonlinearities, a spatial entanglement gate and a polarization entanglement gate are inserted into the circuit, where the X-quadrature homodyne measurement is properly performed. According to the outcomes of homodyne measurement in the spatial entanglement process, some swap gates are inserted into the corresponding paths of the photons to swap their spatial modes. Apart from Kerr media, some basic linear optical elements are necessary, which make it feasible with current experimental techniques.  相似文献   

16.
With the help of quantum Zeno dynamics, we propose fast and noise-resistant schemes for preparing the W states in the indirectly coupled cavity systems via the inverse engineering-based Lewis–Riesenfeld invariant (IBLR). Comparing with the original adiabatic passage method, the results show that the time needed to prepare the desired state is reduced and the effects of the atomic spontaneous emission and the cavity decay on the fidelity are suppressed. Moreover, this scheme can also be generalized to generation of N-atom W states. Not only the total operation time, but also the robustness against decoherence is insensitive to the number of atoms. It proves that our scheme is useful in scalable distributed quantum information processing and contributes to the understanding of more complex systems via shortcuts to adiabatic passage based on Lewis–Riesenfeld invariants.  相似文献   

17.
The effects of Quantum decoherence on Dirac fields in an accelerated frame are studied beyond the single-mode approximation. The decoherence phenomena are investigated through the quantum channel approach using the amplitude damping channel and the dephasing one. The entanglement and purity are two distinct quantum features which are investigated. We have assumed that only the non-inertial observer experiences decoherence phenomena. The associated effects of the acceleration, damping rate, and dephasing rate are considered. It is found that acceleration and decoherence rates will decrease the degree of entanglement and purity. It turns out that beyond the single-mode approximation, the maximal entangled state cannot be achieved. Moreover, a comparison between the damping and dephasing processes is done which reveals the fact that damping effects on the entanglement are stronger than dephasing effects, whereas dephasing has stronger effects on the purity.  相似文献   

18.
We present a scheme for implementing discrete quantum Fourier transform (DQFT) with robustness against the decoherence effect using weak cross-Kerr nonlinearities (XKNLs). The multi-photon DQFT scheme can be achieved by operating the controlled path and merging path gates that are formed with weak XKNLs and linear optical devices. To enhance feasibility under the decoherence effect, in practice, we utilize a displacement operator and photon-number-resolving measurement in the optical gate using XKNLs. Consequently, when there is a strong amplitude of the coherent state, we demonstrate that it is possible to experimentally implement the DQFT scheme, utilizing current technology, with a certain probability of success under the decoherence effect.  相似文献   

19.
A theoretical scheme is proposed to implement bidirectional quantum controlled teleportation (BQCT) by using a nine-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary two-qubit state called qubits \(A_1\) and \(A_2\) to Bob; and at the same time, Bob may also transmit an arbitrary two-qubit state called qubits \(B_1\) and \(B_2\) to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional quantum controlled teleportation protocol works. And we show this bidirectional quantum controlled teleportation scheme may be determinate and secure. Taking the amplitude-damping noise and the phase-damping noise as typical noisy channels, we analytically derive the fidelities of the BQCT process and show that the fidelities in these two cases only depend on the amplitude parameter of the initial state and the decoherence noisy rate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号