首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water soluble polysiloxanes were prepared by condensation of 3-aminopropyl diethoxymethylsilane followed by the reaction of the amines with ethylene carbonate to yield carbamate side chains with terminal hydroxyl groups attached to each silicon atom in the polymer chain. The molecular weight of these carbinol functional polysiloxanes was controlled by adding known concentrations of hexamethyldisiloxane during the polycondensation reaction. The structure of these polymers was confirmed by 1H NMR and FTIR. The resulting polysiloxanes are water soluble and their solubility is independent of the pH or the molecular weight of the polymer. Furthermore, no additives are needed in the water to enhance the solubility of these polymers. The mechanical properties of films that were cast from water solutions were studied and indicated the presence of strong hydrogen bonds that provide for elastomeric films with no need for additional crosslink agents. The hydrophilic nature of the polymer was further confirmed by contact angle measurements and thermal properties data clearly indicate the presence of bound water associated with the large number of hydroxyl groups in the polymer. SEM images of paper coatings prepared from these polysiloxanes revealed a smooth surface with no apparent structural defects that can be used as an anti-graffiti coating.  相似文献   

2.
Water-dispersible glycidyl carbamate (GC) functional resins were synthesized and crosslinked using a water-dispersible amine to form coatings. GC functional resins are synthesized by the reaction of an isocyanate functional compound with glycidol to yield a carbamate (urethane) linkage (–NHCO–) and reactive epoxy group. The combination of both functionalities in a single resin structure imparts excellent mechanical and chemical properties to the coatings. Previous studies on the development of GC coatings have focused on solvent-borne coating systems. In this study, GC resins were modified by incorporating nonionic hydrophilic groups to produce water-dispersible resins. To determine the influence of the content of hydrophilic groups on dispersion stability, aqueous dispersions were made from a series of hydrophilically modified GC resins and characterized for particle size and dispersion stability. The composition of a typical, dispersed GC resin particle was predicted using Monte Carlo simulations. Stable GC dispersions were used to prepare amine-cured coatings. The coatings were characterized for solvent resistance, water resistance, hardness, flexibility, adhesion, and surface morphology. It was observed that GC resins were able to be dispersed in water without using any surfactant and by minimal mixing force (hand mixing) and produced coating films with good properties when crosslinked with a compatible waterborne amine crosslinker.  相似文献   

3.
A primary cause of coating failure is diffusion of water through organic coatings during which many corrosive species are transported to the metal-coating interface. However, water vapor permeability through the coating improves blister resistance to a certain extent. The present work describes the influence of chemical nature of the polymer on the above two properties. Attempts were also made to establish a correlation between these two properties for pigmented organic coating. Six paints were formulated and processed using six different types of binders at a constant pigment volume concentration (PVC) and specific gravity. Water ingress, water vapor permeability, and water absorption of these coatings were estimated using electrochemical impedance measurements (EIS), permeability cup method, and gravimetric method, respectively. There exists a good linear correlation between water uptake measured by EIS and water absorption measured by gravimetry. Similarly, a correlation was also noticed between water uptake by EIS and water vapor permeability. However, polyurethane type polymers did not fit into this linear correlation. Furthermore, influence of the resin chemistry on anticorrosive properties of these coatings was also studied using EIS and salt spray exposure test. Among all polymers under investigation, acrylic polyol-based polyurethane has shown the lowest water uptake, higher impedance, better salt spray resistance but higher water vapor transmission rate.  相似文献   

4.
The oxidative polymerisation of four structurally-related [Pd(salen)] complexes and characterisation of the resulting polymeric films by cyclic voltammetry (CV), UV-visible transmission spectroscopy, X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) is reported. The voltammetric technique gives insight into the electrochemical properties of the polymeric films whereas UV-visible spectroscopy is used to characterise the electronic structure of Pd electroactive films, of particular relevance to the type of charge carriers. X-ray techniques (supported by density functional theory, DFT) provide information related to composition and structural features of [Pd(salen)] precursors and the resulting polymers. Characterisation of poly[Pd(salen)] films shows that the electrochemical response of these supramolecular systems is ligand-based and dependent upon substituents in the diimine bridge and aldehyde moieties. XAS measurements near the Pd K-edge demonstrate that polymerisation of the Pd complexes does not change the coordination sphere of the Pd centre; this is consistent with the coupling of monomers units via phenyl rings. As further evidence of ligand-based electrochemical responses, polymer doping does not impart any changes at the Pd centre or its coordination sphere. Compositional analysis by XPS confirms that C: Pd, N: Pd and O: Pd surface atomic ratios do not change significantly from monomer to undoped or doped polymer, except for small variations associated with incorporation of electrolyte and solvent upon polymerisation and polymer oxidation. Overall, the data provide a picture of a polyaromatic delocalised electroactive system, in which the metal atom plays a templating (rather than electroactive) role.  相似文献   

5.
Novel self-curable cathodically depositable coatings were developed from glycidyl functional epoxy ester-acrylic graft co-polymer (EEAG) without using any external crosslinking agents. The EEAG-amine adducts (EEAGAs) were prepared by reacting EEAG with varying amount of diethanolamine (DEoA) which are neutralized with acid and dispersed in deionised water to give stable dispersion for cathodic electrodeposition (CED) coatings. The dispersions were cathodically electrodeposited on phosphated steel panels and thermally cured to give uniform coating. The coatings were evaluated for different mechanical, chemical and corrosion resistance properties. The coatings were evaluated for their thermal properties using thermo gravimetric analysis (TGA). The final properties of the coatings were found to be affected by the amount of amine reacted with epoxy. The coating films showed good overall performance properties for their use in coating industry.  相似文献   

6.
Electrochemical synthesis is a powerful tool for surface modification, substrate cleaning and formulation of thin films and bulk materials. It is especially suited for surface modification of fibers, metals and films. In the past decade electrochemical method has become the preferred technique for in situ passivation, and coating of commodity metals such as aluminum, zinc, copper and steel.

We have successfully synthesized different kinds of conducting polymers, including polypyrrole (PPy)–polyaniline (PANi) composites. The processability and corrosion performance of PPy/PANi, composite coatings are significantly better than those for either PPy or PANi, coatings.

In this paper, we will discuss the use of electrochemical technique in the synthesis and characterization of multi-functional corrosion resistant conducting polymer coatings for aerospace and automotive applications.  相似文献   


7.
Nanoparticle-filled polymeric coatings have attracted great interest in recent years because the incorporation of nanofillers can significantly enhance the mechanical, electrical, optical, thermal, and antimicrobial properties of coatings. Due to the small size of the fillers, the volume fraction of the nanoparticle/polymer interfacial area in nano-filled systems is drastically increased, and the interfacial region becomes important in the performance of the nano-filled system. However, techniques used for characterizing nanoparticle/polymer interfaces are limited, and thus, the mechanism by which interfacial properties affect the photostability and the long-term performance of nano-filled polymeric coatings is not well understood. In this study, the role of the nanoparticle/polymer interface on the ultraviolet (UV) stability of a nano-ZnO-filled polyurethane (PU) coating system was investigated. The effects of parameters influencing the particle/polymer interfacial properties, such as size, loading, surface modification of the nanoparticles, on photodegradation of ZnO/PU films were evaluated. The nature of the interfacial regions before and after UV exposures were characterized by atomic force microscopy (AFM)-based techniques. Results have shown that the interfacial properties strongly affect chemical, thermo-mechanical, and morphological properties of the UV-exposed ZnO/PU films. By combining tapping mode AFM and novel electric force microscopy (EFM), the particle/polymer interfacial regions have been successfully detected directly from the surface of the ZnO/PU films. Further, our results indicate that ZnO nanoparticles can function as a photocatalyst or a photostabilizer, depending on the UV exposure conditions. A hypothesis is proposed that the polymers in the vicinity of the ZnO/PU interface are preferentially degraded or protected, depending on whether ZnO nanoparticles act as a photocatalyst or a photostabilizer in the polymers. This study clearly demonstrates that the particle/polymer interface plays a critical role in the photostability of nano-filled polymeric coatings.  相似文献   

8.
Gold oxide nanoparticles were incorporated into diamond-like carbon (DLC) films in order to improve protection of AISI-1020 from electrochemical corrosion. The AuOx:DLC films were prepared by plasma enhanced chemical vapor deposition and were subsequently characterized by scanning electron microscopy, Raman spectroscopy and electrochemistry measurements. The electrochemical corrosion performance of the AuOx:DLC coating was contrasted to AISI-1020 and DLC without AuOx coating. The electrochemical techniques that were utilized for this investigation were potentiodynamic and electrochemistry impedance spectroscopy. The electrochemical analysis indicated that AuOx:DLC films presented superior corrosion resistance as compared to DLC. This resulted in 99.8% and 96.8% protection efficiency respectively, when compared to AuOx:DLC and DLC coatings.  相似文献   

9.
Acrylic polymers were synthesized with a ratio of 1 : 7 or 1 : 8 of acrylic acid to acrylic ester monomers to produce an acid‐rich resin. The polymers were water reduced and solvent was stripped to produce colloidal unimolecular polymers (CUPs). These particles were typically 3–9 nm in diameter depending on the molecular weight. They were then formulated into a clear coating with melamine as the crosslinker with thermal curing. Compared to commercial latex films, these melamine‐cured acrylic CUPs had a distinct advantage of having a near‐zero volatile organic compound, better availability of surface functional groups , and improved water resistance. The coatings were evaluated for their methyl ethyl ketone resistance, adhesion, hardness, gloss, flexibility, abrasion , and impact resistance properties. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40916.  相似文献   

10.
We investigated the insulation performance of sub-micrometer parylene C films over time using electrochemical impedance spectroscopy (EIS). For this, interdigitated electrodes were fabricated and completely encapsulated with parylene C in thicknesses of 50, 100, 200, and 500 nm. The EIS was measured in phosphate buffered saline (PBS) solution under an accelerated aging condition at 90 °C over 45 days. To analyze the EIS data, the equivalent circuit models of coating at different stages of coating degradation were used and the lumped circuit parameters of the best fitted equivalent circuit model were extracted by curve fitting. The analysis of impedance using the equivalent circuit model and the FTIR measurements suggest that sub-micrometer parylene C coatings exhibited delamination resulting from water diffusion from the top surface as soon as being immersed in PBS solution, although the degree of delamination varied depending on the film thickness. The penetration of water through sub-micrometers thick parylene C films can occur as quickly as the film is in contact with solution, unlike for thicker coatings in several micrometers where water diffusion would be saturated before water reaches the bottom surface of the coating.  相似文献   

11.
Electrochemical measurements are increasingly being used to evaluate the durability of coatings and polymer films in significantly shorter times than those needed to complete long-term exposure tests. Electrochemical measurements have their limitations and nuances. Variability of data, collecting data before samples reach steady state, and misinterpretation of the data can lead to erroneous estimations of coating and polymer film durability. However, replicate samples, monitoring open circuit potential, and capacitance magnitudes can be used to develop more accurate estimations of polymer film, coating, or coated metal durability from electrochemical data. Presented at the 80th Annual Meeting of the Federation of Societies for Coatings Technology, in New Orleans, LA, October 30–November 1, 2002. 510 Charmany Dr., Ste. 55, Madison, WI 53719, rustdr@pairodocspro.com, www.pairodocspro.com.  相似文献   

12.
Water-borne paint coatings while used outdoors, show good protective behaviour on metals, even though they can take up and release much moisture. As experience shows for physically drying paint coatings, the changing wet-and-dry environment improve their corrosion protection properties. To find out the reasons, eight model coatings – built up from various combinations of layers made of the physically drying styrene-acrylate, and the oxidatively drying alkyd-acrylate based paints – were tested on metal substrate by electrochemical impedance spectroscopy; water uptake/release kinetics was followed by gravimetry on self-standing films made of the above resins. The results of experiments simulating the weathering effects (wet–dry cycling and heating) with the physically drying paint coatings lead us to the conclusions that: (i) water uptake and release removes the water-soluble components from the film and thereby contributes to the good or improving corrosion protection feature, and explains the observation that these coatings perform satisfactorily outdoors and (ii) water release is always much faster than the uptake which helps to keep the interior of the coating dry protecting the metal surface against moisture.  相似文献   

13.
The present study describes the mechanical behavior of powder coatings used under very high compressive loads in clamping force joints. Carboxyl functional polyester powder coatings cured with hydroxyl functional β-hydroxyalkylamides with variations in coating thickness and amount and type of filler, have been studied. The coatings were subjected to conventional tests for coatings and polymers and also to specially designed tests developed to study the behavior of powder coatings in clamping force joints. The specially designed tests were used to study the coatings under compressive loads, and the relation between the results from these test methods and from conventional tests is discussed. The results show the importance of coating thickness in order to achieve the desired mechanical properties of a coating when used under high compressive loads. These loads put high demands on the stability of the coating, and the defects must be kept to a minimum. Increased thickness will give rise to more defects in the coating, especially voids and blisters due to the evaporation of water formed during the curing of the polyester powder coating. The surface roughness of the coating is also affected by the coating thickness, but the main influence originates from the type and amount of filler used. A rough surface will give rise to stress concentrations and increased plastic deformations in the coating, impairing the properties of the clamping force joint.  相似文献   

14.
The use of inexpensive and biodegradable deep-eutectic ionic mixtures as solvents for the electrochemical synthesis of conducting polymers could potentially improve the sustainability of these processes and reduce their economic cost. Such an unexplored approach was investigated in this communication by growing a model polymer such as polyaniline from a 1:2 mixture of choline chloride and 1,2-ethanediol (the so-called Propeline) using potentiodynamic and potentiostatic electrochemical procedures. Beyond a preparation method, cyclic voltammetry was also used to characterize the growth of the polymers. The morphology of the films, and their optical properties, were assessed ex-situ by means of scanning electron microscopy and spectroscopic measurements in the UV–vis. The polyanilines thus prepared exhibited nanoparticulated morphology and high reversibility to doping/dedoping which evidences fast charge transport across the films. Excellent conductivities higher than 50?S?cm?1 were found under this approach.  相似文献   

15.
The synthesis, characterization, and coatings performance of a series of glycidyl carbamate (GC) resins synthesized from a hexamethylene diisocyanate biuret resin, glycidol, and alcohols were explored. The partial replacement of glycidol with alcohols was explored as a way to reduce the viscosity of multifunctional GC resins. Six modified GC resins were obtained by replacing one-third of the glycidol with alcohols and ether alcohols. The modified GC resins were characterized using FTIR and 13C NMR. The alcohol-modified GC resins had significantly lower viscosity than that of the control GC resin. The effect of amount of alcohol modifier on resin viscosity was also studied by making a series of resins with different levels of modifier. Both amine-cured and self-crosslinked coatings were prepared from the resins. Coating properties such as hardness, impact strength, methyl ethyl ketone double rubs, flexibility, and adhesion were studied. Differential scanning calorimetry and thermogravimetric analysis were also used to study the thermal properties of the coatings. The resin structures and their coating performance showed an excellent correlation. The coating performance was found to be governed by the type of modifier, structural compositions of the modifier in the resins, type of amine crosslinkers, and techniques of crosslinking used.  相似文献   

16.
V. Barranco 《Electrochimica acta》2004,49(12):1999-2013
The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake ?, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma polymer films could be quantified for the smooth films. The measurements show that the quantitative evaluation of the electrochemical impedance data requires a detailed understanding of the film morphology and chemical composition. In addition, the measured diffusion coefficient of about 1.5×10−14 cm2 s−1 shows that plasma polymers can act as corrosion resistant barrier layers at polymer/metal interfaces.  相似文献   

17.
Polyaniline films were electrodeposited at pure aluminium from a tosylic acid solution containing aniline. These polymer films exhibited similar characteristics as pure polyaniline electrosynthesized at an inert platinum electrode, when removed from their respective substrates and dissolved in NMP. Both polymers had similar molecular weights and similar UV-visible absorption spectra. However, the aluminium substrate had a considerable effect on the electrochemical activity of the films. The polyaniline films deposited at aluminium appeared to lose electroactivity and the electrochemical impedance data were governed by the oxidized aluminium substrate. This is consistent with a galvanic interaction between the polymer and the aluminium substrate, giving rise to oxidation of the aluminium and reduction of the polymer. The polyaniline deposits appeared to offer only a slight increase in the corrosion resistance of aluminium. Surface potential measurements, using a scanning vibrating probe, showed that attack initiated underneath the polymer under anodic polarization conditions, indicating that chloride anions diffuse across the polymer to react at the underlying aluminium substrate.  相似文献   

18.
Herein, we describe the design, synthesis, and structural characterization of three new push-pull type conjugative polymers, that is, VPPy 1-3 comprising strong electron-withdrawing N-heterocyclic nicotinonitrile scaffold coupled with electron-donating phenylene units through vinylene bridges, as promising candidates for optoelectronic applications. They were successfully synthesized from their respective co-monomers by simple polycondensation synthetic routes, viz. Knoevenagel and Wittig reactions. All the polymers were subjected to photophysical, electrochemical, thermal, and theoretical studies in order to ascertain their suitability in polymer light-emitting diode applications as blue emitters. Evidently, they are readily soluble in most of the organic solvents, enabling them easy solution-processable. These new polymers display strong blue photoluminescence at the peak in the range of 431 to 462 nm with a wide optical bandgap in the order of 2.55 to 2.63 eV. The obtained electrochemical data were employed to evaluate their HOMO/LUMOs. The density functional theory calculations generated useful information on their FMO, molecular geometries, and electronic properties. Also, the influence of their structural modification on the above-said properties was discussed in detail to reveal the structure-property relationship. Conclusively, these results illustrate the great prospective of this class of polymeric materials for the application in solution-processable blue LEDs.  相似文献   

19.
The types of thermoplastics suitable for the plastic flamespray process and the effect of the flamespray on the physical properties and degree of crystallinity in semicrystalline thermoplastics are investigated. Novel coating application techniques and the use of polymer blends to produce viable coatings are also reported. Ethylene-carboxylic acid copolymers, aliphatic polyketones, polyether block amides, and liquid crystal polymers as flamesprayable coating materials are reviewed. The flamespray process does not significantly affect the crystallinity in the polymers studied; however, polymers possessing functional hydrolyzable groups in the backbone such as the polyether block amide may experience some reduction in physical properties during the flamespray process.  相似文献   

20.
The methodical approach and the cell to study electrochemical processes occurring during cathodic disbondment of a polymer coating are worked out. They permit one to investigate the role of each process separately when supervising the metal substrate potential, electrolyte and polymer coating composition at a metal/polymer/electrolyte interface. The cathodic disbondment of ethylene-vinyl acetate copolymer, polyisoprene and poly(vinyl chloride) coatings are studied. It is found that the cathodic disbondment rate for ethylene-vinyl acetate copolymer coatings depends on double layer parameters at the interface. These parameters are determined by specific volume charge of hydrated cations of the electrolyte, potential of the substrate, the presence of oxygen, surface active substances, etc. Based on the data of IR spectroscopy in internal reflection applied to disbonded films, it is established that during the cathodic disbondment an electron transfer to polymer functional groups, as well as an attacking of the adhesion bonds by active intermediates of oxygen reduction, occurs resulting in an electrochemical degradation of the polymer and an adhesion loss. It is shown that the electrochemical transformations at the steel/poly(vinyl chloride) interface can lead to the appearance of new adhesion bonds, increasing adhesion strength and decelerating the cathodic disbondment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号