首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes that catalyze the addition of a sulfuryl moiety to both endogenous compounds, including steroids and neurotransmitters, and certain xenobiotics, including N-hydroxy-2-acetylaminoflourine and phenolic compounds, like alpha-naphthol. In contrast to certain Phase I drug-metabolizing enzymes, little is known about the regulation of the sulfotransferases. These series of studies were designed to analyze SULT mRNA expression and hormonal regulation in male and female rats. The hepatic expression of six different SULT isoforms was examined including three phenol SULTs and three hydroxysteroid SULTs. SULT mRNA expression was examined in adult and developing rats, as well as, in hypophysectomized (HX) and growth hormone-supplemented HX animals. SULT1A1 is thought to be important for the sulfation of simple phenols and its mRNA expression is about twice as high in adult male as in female rats. This difference in SULT1A1 mRNA levels is largely due to a greater decrease in mRNA levels after puberty in female than in male rats. Hypophysectomy resulted in a decrease in expression of SULT1A1 mRNA in both male and female rats. Replacement of growth hormone (GH) by either intermittent injection (male pattern) or infusion (female pattern) failed to restore SULT1A1 expression. Sulfotransferase SULT1C1 has been implicated in activation of N-hydroxyacetylaminoflourine. In contrast to SULT1A1, SULT1C1 mRNA expression is about 10-fold higher in adult males than in adult female rats. This male-dominant expression pattern emerges at 40-50 days of age and is due to an increase in SULT1C1 mRNA in males. Hypophysectomy abolished SULT1C1 expression in male rats. Interestingly, replacement of GH by injection (male pattern) restored SULT1C1 mRNA expression in males and enhanced SULT1C1 expression in female rats to levels observed in adult male rats. GH infusion (female pattern) did not affect SULT1C1 mRNA expression in either male or female rats. Estrogen sulfotransferase (SULT1E2) may play a role in estrogen homeostasis. Adult male rats express SULTIE2 mRNA at levels 10-fold higher than those observed in adult females and similar to SULT1C1, this is due to an increase in SULT1E2 mRNA occurring during puberty in the male rat. Hypophysectomy did not appreciably affect SULT1E2 expression in male rats, however in contrast to males, hypophysectomy markedly enhanced SULT1E2 expression in female rats. GH infusion suppressed SULT1E2 levels in HX male rats. The expression of hydroxysteroid sulfotransferases was also examined. The SULT-20/21 isoform was expressed in both male and female rats. Male expression of this isoform peaked at 30 days of age and then declined to approximately 30% of the level observed in adult females. SULT-20/21 mRNA expression increased sharply at 45 days of age in female rats and remained elevated. Expression of SULT-20/21 mRNA was decreased markedly by hypophysectomy in both male and female rats. GH injection did not affect SULT-20/21 mRNA expression in HX males, however this treatment resulted in a 4-fold increase in SULT-20/21 mRNA in HX females. GH infusion restored SULT-20/21 expression in HX-male rats. GH infusion did elevate SULT-20/21 mRNA expression in female-HX rats, but not to the level observed in intact females. Hydroxysteroid SULT isoform SULT-40/41 was expressed in adult female but not adult male rats. SULT-40/41 expression peaked at 15 days of age in both male and female rats and decreased thereafter. The decrease in expression was more pronounced in male rats. SULT-60 mRNA, like SULT-40/41, was expressed only in adult female rats. Male rats express SULT-60 at 30 days of age, but SULT-60 mRNA is undetectable at 60 days. SULT-60 mRNA was expressed in females only after day 30 and female SULT-60 mRNA expression remains high thereafter. SULT-40/41 and SULT-60 mRNA expression was increased by HX in male rats and decreased by HX in female rats. (ABSTRACT TRUNCATED)  相似文献   

2.
These experiments examined the role of gonadal hormones at both the organizational and activational time periods on sex differences in plus-maze behavior. In the first experiment, adult female Long-Evans rats were found to spend more time on the open arms of the plus maze than adult males, indicating less anxious behavior. In the second experiment, male and female subjects received a neonatal treatment (chemical castration with flutamide or tamoxifen, vehicle injection, or no injection) and a prepubertal treatment (gonadectomy, sham surgery, or no surgery). Adult females receiving either neonatal tamoxifen or prepubertal ovariectomy spent less time on the open arms than control females, but females who received both treatments were the most defeminized subjects. Males were not affected by the absence of gonadal hormones at either time period. These experiment indicate that female gonadal hormones play an important role both organizationally and activationally in plus-maze behavior. The role of the GABA receptor complex in mediating this effect is discussed. Knowledge of sex differences in plus-maze behavior may help to make this maze a more useful tool in investigating anxiety behavior in rats.  相似文献   

3.
PURPOSE: The effect of sex hormones on the protein and collagen content of the temporomandibular joint (TMJ) disc of adult male and female rats. MATERIALS AND METHODS: One hundred forty-four Wistar rats were assigned to 14 groups of 12 each. Two groups, one female and one male, served as a control and received no treatment, and two other groups (one female and one male) received a sham gonadectomy and placebo hormone. The remaining 10 groups (five males and five females) received either orchiectomy or ovariectomy, followed by administration of estrogen, progesterone, combined estrogen and progesterone, or testosterone. The total protein and collagen content of the TMJ disc were determined using the calorimetric hydroxyproline method. RESULTS: The collagen content of TMJ discs of control males was statistically greater than the collagen content of the control female rats. This difference disappeared after ovariectomy of females and orchiectomy of males. Also, there was a general trend for a decrease in collagen and protein content to be produced by estrogen, progesterone, and by estrogen combined with progesterone in castrated male and female rats, and by orchiectomy of male rats. There was also a trend toward an increase in collagen and protein content after ovariectomy in female rats and administration of testosterone to castrated male and female rats. However, the only statistically significant effect of the drugs tested was that of estrogen combined with progesterone in ovariectomized female rats (a lowering effect on the total protein) and of estrogen alone in orchiectomized male rats (a lowering effect on the collagen content). CONCLUSION: Steroid sex hormones have an effect on the collagen and protein content of the TMJ disc of the rat as indicated by the difference in the values between control males and females and by the disappearance of this difference on castration of both male and female animals. This was also manifested by the significant effect of estradiol on collagen content of castrated males, by the effect of estrogen combined with progesterone on the protein content of castrated females.  相似文献   

4.
Diurnal variations in serum hormone levels during 2 different stages of prepubertal development were investigated in male and female rats. Groups of 13 to 18 and 25 to 30 day old male and female rats were decapitated at 4-hour by intervals during a period of 24 h. Their blood was collected and hormones were measured by radio-immunoassay. FSH levels were constantly high in 13 to 18, but low in 25 to 30 day old females. FSH was low in younger males, and significantly higher but without diurnal fluctuations in the older males. Serum LH was low in approximately 40% of the 13 to 18 day old females, while 40% had moderately high levels, and the remaining females extremely high levels of the hormone. Most of the extremely high LH peaks were found at 15.00 h and some at 03.00 h. Older females and males of both age groups had constantly low serum LH levels. Serum oestradiol was high in males and females during days 13 to 18, but it was lower in the 25 to 30 day old animals. In the young females prolactin was slightly elevated between 15.00 h and 19.00 h, while in the males the serum prolactin fluctuations were not significant. Serum testosterone was low in females at all times. The 13 to 18 day old males had higher testosterone levels than the 25 to 30 day old males. Both groups showed slight, but insignificant fluctuations in serum testosterone.  相似文献   

5.
We have previously shown inherent sex differences in the levels of androgen receptor mRNA (AR mRNA) in hamster facial motor neurons (FMN). FMN of intact females contained approximately 50% less AR mRNA than their male counterparts. Gonadectomy in males down-regulated AR mRNA levels in FMN by approximately 50%, whereas no effects of gonadectomy were observed in females. Sex differences in the regulation of AR mRNA levels by exogenous testosterone propionate (TP) were also observed. In those studies, AR mRNA levels were up-regulated after 1 day of treatment with exogenous TP in FMN of gonadectomized (GDX) males and after 7 days in FMN of intact females, with no effects in GDX females. Since TP is aromatizable to estrogen, and given recent findings of transient expression of estrogen receptors (ER) in rodent FMN, the effects of dihydrotestosterone (DHT), a non-aromatizable form of the steroid, on AR mRNA expression in hamster FMN were examined in the present study. If testosterone (TES) were the active hormone regulating AR mRNA levels in FMN, DHT treatment should render a similar regulatory pattern as TP, but if metabolism of TES to estradiol plays a role in AR mRNA regulation, effects of the two treatments should differ. In situ hybridization and computerized image analysis were used to quantify the regulation of AR mRNA by DHT in individual FMN of hamsters of both sexes. Exogenous DHT was administered to intact and gonadectomized (GDX) male and female hamsters by implantation of one 10-mm Silastic capsule for 1, 2 or 7 days. AR mRNA levels were significantly up-regulated in intact females at all time points of DHT exposure, with no effects in GDX groups. These results differ from previous work using TP, in which a modest up-regulation in AR mRNA levels was observed in FMN of intact females only after 7 days. As with TP, DHT exposure gradually down-regulated AR mRNA levels in FMN of intact males. Thus, DHT only regulated AR mRNA levels in intact animals, with endogenous sources of estrogen available, but not in GDX animals, with endogenous estrogens reduced by gonadectomy. Taken together, these results substantiate our previous findings of sex differences in AR mRNA levels/regulation and suggest a synergism between estrogen and androgen in the regulation of AR mRNA levels in peripheral motor neurons.  相似文献   

6.
In the rat, alternatively spliced messenger RNA (mRNA) species encode GH receptor (GHR) and GH-binding protein (GHBP). Additionally, these mRNAs are alternatively spliced in the 5'-untranslated region, resulting in at least two classes of GHR and GHBP mRNA with distinct first exons and identical coding regions. These alternative first exons define two unique classes of GHR and GHBP mRNA (called GHR1 and GHR2). The GHR1 class of RNA is expressed only in the liver, is far more abundant in females than males, and is particularly abundant during pregnancy. GHR1 RNA is induced later in development than is GHR2. Additional classes of GHR and GHBP RNA may also exist. The genomic structure of the GHR1 first exon reveals a putative promotor region with no TATA box, CAAT box, or other sequence elements suggesting specific responses. An in vivo approach was used to investigate the regulation of GHR1 expression. In female rats, gonadectomy was found to reduce the percentage of steady state GHR1 RNA levels in the liver, whereas male castration resulted in an induction of GHR1 RNA. However, short-term treatment with estrogen or testosterone had little effect, suggesting that direct regulation of GHR1 expression may occur through effector(s) other than gonadal steroids. Hypophysectomy abolished GHR1 RNA in females. Treatment of hypophysectomized females and castrated males with GH by single injection did not significantly induce GHR1 RNA, but treatment by continuous infusion of GH did. Little change in non-GHR1 RNA levels was observed for each of these treatments. The results suggest that: 1) the sexual dimorphism observed in total GHR and GHBP RNA in rat liver is attributable to the sexually dimorphic expression of the GHR1 class of RNA; 2) the sexually dimorphic pattern of GH release in rats regulates the GHR1 class of RNA; 3) changes in GHR and GHBP expression observed on gonadectomy, hypophysectomy, GH treatment, and pregnancy are best attributed to GHR1 regulation; and 4) since GHR1 is liver specific, the observed increases in serum GHBP concentration in response to sex steroids, GH pattern, and pregnancy are likely to originate from the liver.  相似文献   

7.
An ethanol oral self administration paradigm showed the existence of gender differences in alcohol preference in rats: whereas males and females initiated alcohol drinking at similar rates, females maintained their preference for ethanol over a longer duration. Neonatal estrogenization of females, which effectively confers a male phenotype on a genetically female brain, resulted in patterns of drinking that were similar to those displayed by intact male rats, indicating that gender differences in alcohol drinking patterns may be, at least partially, accounted for by sexual differentiation of the brain. To test whether gonadal steroids also exert activational effects on ethanol-seeking behavior, we also examined the effects of gonadectomy alone, or in combination with gonadal steroid replacement therapy. Castration did not significantly alter ethanol consumption in males, although treatment of castrated rats with dihydrotestosterone resulted in a significant inhibition of this parameter. As compared with the situation in intact female rats, ethanol ingestion was significantly reduced in ovariectomized female rats receiving estradiol (E2) and in ovariectomized female rats receiving combined E2 and progesterone replacement therapy. However, neither ovariectomy nor progesterone replacement in ovariectomized rats resulted in ethanol drinking patterns that were different compared to those observed in intact female controls. Thus, dihydrotestosterone and E2, respectively, appear to exert modulatory influences on the male and female rats' preference for ethanol, but further investigations are necessary to determine to what extent these effects result from activational actions on the brain.  相似文献   

8.
Intact, but sham-operated female rats had 2- to 3-fold higher levels of hepatic 3-hydroxy-3-methylglutaryl CoA reductase activity than their male counterparts (15--21.5 vs. 6.7--8.7 nmol mevalonate/mg protein per h). The activity of the hepatic enzyme declined to about the same relative degree (40--60%) in male and female rats that were gonadectomized after puberty (53 days of age) and killed 5 weeks later. Implantation of silastic capsules containing 17 beta-estradiol increased the level of hepatic 3-hydroxy-3-methylglutaryl CoA reductase to levels found in sham-operated controls. In rats that were gonadectomized in infancy (12 h old) and killed 7--8 weeks later, the level of enzyme activity was not altered in females, but it was increased from 60--240% in males. Consequently, following neonatal gonadectomy, male-female differences in enzyme activity were no longer apparent. Implantation of silastic capsules containing estradiol in neonatally gonadectomized rats resulted in a doubling of enzyme activity in both males and females. Ovariectomy reduced plasma estrogen levels, but implantation of estradiol in gonadectomized males and females increased the hormone level to that found in sham-operated females. Thus, the results strongly suggest a role for physiologic levels of estrogen as a positive effector of 3-hydroxy-3-methylglutaryl CoA reductase activity. Neonatal sex imprinting also appears to modulate the enzyme activity since sex-mediated differences are effaced by gonadectomy in infancy, but not by gonadectomy following puberty.  相似文献   

9.
Experiments were carried out in 10-11-week old gonadectomized male and female Sprague-Dawley rats. Dot-blot analysis and 3'-end digoxigenin-labeled 26 meroligonucleotide probe was used in detecting the mRNA level hypothalamic vasopressin (AVP). The basal hypothalamic AVP-mRNA level in the sham-operated intact males was 45% higher than that in the sham-operated intact females (P < 0.05). Plasma osmolality was also higher in the sham-operated intact males than in the sham-operated intact females (P < 0.05). The hypothalamic AVP-mRNA level in ovariectomized rats was 30% higher than that in sham-operated intact females (P < 0.05). Although the hypothalamic AVP mRNA level tended to be lower in castrated males than in sham-operated intact males, the difference was not statistically significant. The difference in plasma osmolality between gonadectomized males and females was statistically insignificant. In castrated males, hypothalamic AVP-mRNA level was decreased following sc injection of estradiol (P < 0.05), but testosterone, progesterone or a combination of estradiol and progesterone were without effect. In ovariectomized rats, sc injection of estradiol or a combination of estradiol and progesterone resulted in a decrease in hypothalamic AVP-mRNA level (P < 0.01), but progesterone or testosterone had no effect. The difference in plasma osmolality between gonadal steriod hormones-treated rats and vehicle-treated rats was not statistically significant. These findings indicate that gonadal steriod hormones can affect hypothalamic AVP-mRNA level in rats, through some central mechanism.  相似文献   

10.
Rated the degree of self-disclosure of 40 male and 40 female undergraduates in interviews with either male or female interviewers of high or low status. A 2 * 2 * 2 analysis of variance revealed that (a) males disclosed more to females, while females disclosed more to males; (b) dyads containing a female resulted in more disclosure than all male dyads; (c) males revealed more to high-status interviewers, while females disclosed more to low-status interviewers; and (d) high- as opposed to low-status male interviewers elicited more disclosure from all Ss, while status of female interviewers resulted in no significant differences. The need for use of multiple measures in self-disclosure research and implications for client-therapist matching is noted. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
12.
While UDP-glucuronosyltransferases (UGTs) are known to be expressed at high levels in human liver, relatively little is known about extrahepatic expression. In the present study, UGT2B family isoforms involved in the glucuronidation of steroid hormones and bile acids have been characterized in microsomes prepared from jejunum, ileum and colon from six human subjects. Glucuronidation of androsterone and testosterone was highly significant and increased from proximal to distal intestine. In contrast, hyodeoxycholic acid was glucuronidated at a low level in jejunum and ileum and activity was barely detectable in colon. No significant glucuronidation of lithocholic acid was found. Small phenols were glucuronidated with much lower activity than found in liver. High levels of UGT protein were detected with polyclonal anti-rat androsterone- and testosterone-UGT antibodies, whereas UGT2B4, a major hepatic hyodeoxycholic acid-specific UGT, was undetectable using a highly specific anti-human UGT2B4 antibody. Screening for RNA expression by RT-PCR confirmed the absence of UGT2B4 and UGT1A6 and showed expression of UGT2B7, a hepatic isoform shown to glucuronidate androsterone, in all intestinal segments. To our knowledge, the presence of functional androsterone and testosterone directed isoforms in human intestine is a novel finding which supports the idea that the intestinal tract functions as a steroid-metabolizing organ and plays a significant role in steroid hormone biotransformation.  相似文献   

13.
The sexually dimorphic profile of GH secretion is thought to be engendered by gonadal steroids acting in part on hypothalamic periventricular somatostatin (SOM) neurons. The present study set out to examine and characterize the development of sex differences in these SOM neurons. In the first series of experiments, we used in situ hybridization to examine SOM messenger RNA (mRNA) expression within the periventricular nucleus (PeN) of male and female rats on postnatal day 1 (P1), P5, and P10. Cellular SOM mRNA content was found to increase from P1 to P10 in both sexes (P < 0.01), but was 24% (P < 0.05) and 38% (P < 0.01) higher in males on P5 and P10, respectively. A second series of experiments examined the SOM peptide content of the PeN in developing rats and found increasing levels from P1 to P10, with a 44% higher SOM content in males compared with females on P10 (P < 0.05). The third series of experiments questioned the role of gonadal steroids in engendering sex differences in SOM mRNA expression by determining the effects of neonatal gonadectomy (GDX) and replacement of dihydrotestosterone or estradiol benzoate. The SOM mRNA content of PeN neurons in P5 males gonadectomized on the day of birth was the same as that in P5 females and was significantly reduced compared with that in sham-operated P5 males (P < 0.05). Male rats GDX on P1 and treated with estradiol benzoate from P1 to P5 had cellular SOM mRNA levels similar to those in intact males on P5, whereas dihydrotestosterone treatment had no effect. Treatment of intact males with an androgen receptor antagonist, cyproterone acetate, on P1 had no effect on cellular SOM mRNA on P5, whereas male rats given the aromatase inhibitor 1,4,6-androstatriene-3,17-dione from P1 to P5 had lower (P < 0.05) SOM mRNA levels than controls. In the final set of experiments, dual labeling immunocytochemistry showed that SOM neurons in the PeN of P5 rats did not contain estrogen receptor-alpha, but expressed androgen receptors in a sexually dimorphic manner. These results demonstrate that a sex difference in SOM biosynthesis, which persists into adulthood, develops between P1 and P5 in PeN neurons. Despite the absence of estrogen receptor-alpha in these neurons, the organizational influence of testosterone only occurs after its aromatization to estrogen.  相似文献   

14.
The present study examined odorant communication during acute illness provoked by injection of lipopolysaccharide (LPS; 100 μg/kg) and how these effects vary between prepubertal and adult conspecifics. Exposure to odor of LPS-treated adult male rats produced increased avoidance in both sexes of adults and prepubertal male partners. This response was not found when they were exposed to odor of LPS-treated prepubertal males. Even a 2.5-fold higher load of LPS in prepubertal males failed to produce aversive odor cues, suggesting that the difference in the odor is not a simple issue of dose/body volume. Both estradiol benzoate (20 μg/kg) and testosterone propionate (500 μg/kg), but not dihydrotestosterone (500 μg/kg) pretreatment in prepubertal males administered LPS restored the expression of aversive odor. These hormone treatments per se did not influence odor properties of prepubertal males, indicating that estrogen receptors may play a key regulatory role in the expression of aversive odor in LPS-treated prepubertal rats. These data suggest that the expression of sickness-related odor emerges through puberty, and likely involves a complex interaction between inflammation and sex steroids across development. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
EEG activity was recorded from the left and right parietal cortex in adult male and female Wistar rats that were gonadectomized (GNX) after puberty during 2 days without and 3 days with hormonal treatment (either testosterone propionate, 5 alpha-DHT or vehicle in males and progesterone, estradiol benzoate or vehicle in females). In contrast to EEG characteristics reported for intact rats, GNX abolished right over left parietal activation in both sexes and, sex differences in EEG interhemispheric correlation and in theta and delta relative power in the right parietal; additionally GNX males showed higher absolute power than females. Hormonal treatment reestablished interparietal asymmetry in both sexes and a lack of sex differences in absolute power, however, it was not enough to reestablish sex differences in delta and theta proportion in the right parietal nor in interhemispheric correlation. Differential effects were obtained with testosterone propionate and 5 alpha-DHT in males suggesting that activational effects of testosterone on EEG are probably exerted through testosterone or its aromatized metabolites. The results of our study indicate that the activational effects of gonadal steroids after puberty are necessary for maintaining sex differences in the EEG of the adult rat.  相似文献   

16.
At least two classes of mRNA for the GH receptor (GHR) and GH binding protein (GH BP) with different 5' untranslated first exons exist in the rat. One such class, the GHR1 is predominantly expressed in the liver of female rats. The hepatic expression of the GHR1 mRNA in normal and hypophsectomized rats of both sexes was studied by employing an RNase protection/solution hybridization assay. Normal females expressed 10-fold more GHR1 mRNA than males, hypophysectomy of female rats decreased the GHR1 level to that observed in male rats. Continuous GH treatment of hypophysectomized male and female rats for 6 days increased the expression of GHR1 mRNA to levels found in normal females, whereas intermittent GH treatment without effect. Bovine GH(bGH) induced the GHR1 expression in a time- and dose-dependent manner in primary cultures of adult rat hepatocytes as determined by solution hybridization. Maximal induction was achieved after 72 h of treatment with 50 ng bGH/ml medium. Female enriched expression of receptor and binding protein mRNAs raises the possibility that they participate in determining the ability of the liver to respond differently to the male and female GH secretory patterns. Our in vitro model utilizing cultures of primary adult rat hepatocytes could be used to address this issue as well as explore a hormonal interplay in regulation of GHR1 expression.  相似文献   

17.
Glucuronidation is a major pathway of thyroid hormone metabolism in rats, involving at least three different hepatic UDP-glucuronyltransferases (UGTs): bilirubin UGT, phenol UGT and androsterone UGT. We have studied the effects of short-term (3 days) fasting and long-term (3 weeks) food restriction to one-third of normal intake (FR33) on hepatic UGT activities for thyroxine (T4), triiodothyronine (T3), bilirubin and androsterone in male and female Wistar rats with either a functional (high activity, HA) or a defective (low activity, LA) androsterone UGT gene. Because food deprivation is known to induce centrally mediated hypothyroidism in rats, results were compared with those obtained in methimazole (MMI)-induced hypothyroid rats. Both fasting and FR33 produced largely parallel increases in T4 and bilirubin UGT activities. These effects were greater in males than in females, and were reproduced in MMI-treated rats. In male and female HA rats, fasting induced insignificant increases in T3 UGT activity and had no effect on androsterone UGT activity. In male HA rats, FR33 was associated with an increase in T3 UGT activity, while androsterone UGT activity showed little change. However, in female HA rats both T3 and androsterone UGT activities were markedly decreased by FR33. Triiodothyronine UGT activity in LA rats was strongly decreased compared with HA rats, but was not further decreased by FR33 in female LA rats, supporting the importance of androsterone UGT for T3 glucuronidation. These results demonstrate different sex-dependent effects of food deprivation on hepatic T4 and T3 glucuronidation that are associated with changes in the expression of bilirubin UGT and androsterone UGT, respectively. For the increased T4 and bilirubin UGT activities at least, these effects appear to be mediated by the hypothyroid state of the (semi)starved animals.  相似文献   

18.
In addition to age-related deficits in morphine antinociception in female rats, gender and gonadectomy differences have also been observed, with male rats displaying greater magnitudes of effects than females and castrated males. Since there are little data indicating how aging, gender, and gonadectomy interact in modulating morphine antinociception, the present study evaluated alterations in this response as functions of age (6, 12, 18, and 24 months), gender, and gonadal status (intact, gonadectomized) across a dose range (1-10 mg/kg) and time course (0.5-2 h) on the tail-flick test. The maximal percentage effect (MPE) of morphine (1 mg/kg) was significantly increased in castrated males (18 months), sham females (18 and 24 months), and ovariectomized females (18 months) relative to 6-month-old groups. Increases in the MPE of morphine (1 mg/kg) occurred in sham females (24 months) relative to corresponding sham males and ovariectomized females. The MPE of morphine (2.5 mg/kg) was significantly increased in sham males (18 months) and decreased in sham females (12 months). Decreases in the MPE of morphine (2.5 mg/kg) occurred in castrated males (18 and 24 months) as well as sham (18 months) and ovariectomized (18 and 24 months) females relative to sham males. Whereas the MPE of morphine (5 mg/kg) was unchanged by these variables, the MPE of morphine (10 mg/kg) was significantly decreased in sham females (18 and 24 months) relative to females aged 6 months, as well as males and ovariectomized females aged 24 months.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Intraperitoneal injections of an aqueous extract of winter cherry fruits (Physalis alkekengi) to new-born, weanling and adult female rats and to weanling and adult male rats had no effect on body weight, liver weight and liver cytosol protein content. The specific activities of hepatic glucose 6-P dehydrogenase (an estrogen induced protein) in rats of different age and sex groups in terms of mU/mg protein were: treated new-born females, 15.9 +/- 0.5; control, 29.1 +/- 0.6; treated weanling females, 14.9 +/- 0.3; control, 24.8 +/- 0.7; treated adult females, 25.7 +/- 0.5; control, 26.1 +/- 0.5; treated weanling males, 7.9 +/- 0.2; control, 7.9 +/- 0.1; treated adult males, 9.6 +/- 0.4; and control, 9.7 +/- 0.3. Treatment of new-born and weanling female rats with the extract resulted in 40-45% reduction in hepatic G6PD activity. However, treatment of adult females, and weanling and adult males produced no significant change in the activity of this enzyme. The data are discussed both in terms of the increase in the capacity of rodent liver to metabolize steroidal compounds with age and the presence of low levels of circulating estradiol necessary for enzyme induction in male rats.  相似文献   

20.
This study examined the regulation of LHRH messenger RNA (mRNA) during pubertal maturation and by testosterone in male ferrets. Prepubertal and postpubertal ferrets were either intact or were castrated and treated with daily injections of oil or 5 mg/kg testosterone propionate for 14 days. In situ hybridization for LHRH mRNA was performed using an 35S-labeled 48-base oligonucleotide complementary to the human LHRH-coding region. Computerized image analysis was performed on cells in the preoptic area, retrochiasmatic area, arcuate nucleus (ARC), and median eminence; cells were classified as labeled if the number of pixels representing silver grains over the cell was 5 or more times the number of background silver grain pixels. Both pubertal maturation of intact males and castration of prepubertal males resulted in an increase in the number of labeled cells in the ARC. These effects were not observed in any of the other three brain regions, suggesting that ARC LHRH-producing neurons are of primary importance in the presumed increase in LHRH release that occurs as a consequence of either pubertal maturation or castration of prepubertal males. Castration of adults did not increase the number of labeled cells in any brain area, but resulted in an increase in silver grains per labeled cell only in the preoptic area. Thus, LHRH mRNA is regulated during puberty primarily in the ARC, and the particular cell group in which LHRH mRNA is most strongly regulated by testosterone changes with pubertal maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号