首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
陈爱戎  张文祥 《计算机仿真》2007,24(7):280-282,346
在常规机械中很少考虑的微小静电力会对MEMS的电路产生一定影响,同时MEMS的元件在静电力作用下会发生变形,进而使得MEMS的几何结构和电容等产生变化,加之目前MEMS试制成本较高,因此,必须对整个系统的静电性能和机电性能进行分析.利用边界元素法,对MEMS各元件进行静电性能分析;采用有限元分析软件包对MEMS作机电性能分析,探讨了驱动电压与位移的关系、位移变化与电容的关系等.通过仿真测试发现,可提高设计质量,降低成本,缩短研制周期.  相似文献   

2.
Nanostructured hollow spheres of SnO2 with fine nanoparticles were synthesized by ultrasonic atomization. Thick film gas sensors were fabricated by screen printing technique. Different surface modified films (Fe2O3 modified SnO2) were obtained by dipping them into an aqueous solution (0.01 M) of ferric chloride for different intervals of time followed by firing at 500 °C. The structural and microstructural studies of the samples were carried out using XRD, SEM, and TEM. The sensing performance of pure and modified films was studied by exposing various gases at different operating temperatures. One of the modified sample exhibited high response (1990) to 1000 ppm of LPG at 350 °C. Optimum amount of Fe2O3 dispersed evenly on the surface, adsorption and spillover of LPG on Fe2O3 misfits and high capacity of adsorption of oxygen on nanostructured hollow spheres may be the reasons of high response.  相似文献   

3.
Simultaneous measurement of total NOx and O2 using two electrochemical methods are demonstrated using metal/metal oxide internal oxygen reference electrode-based sensors at high temperatures. The Pd/PdO-containing reference chamber was sealed within a stabilized zirconia superstructure by a high pressure/temperature plastic deformation bonding method exploiting grain boundary sliding between the ceramic components. Amperometric and potentiometric NOx sensing devices were assembled on the outside of the sensor. Pt-loaded zeolite Y was used to obtain total NOx capability. Both the amperometric and potentiometric type sensors showed total NOx response, with the potentiometric device showing better NOx/O2 signal stability and lower NOx–O2 cross-interference. Since these sensors do not require plumbing for reference air, there is more flexibility in the placement of such sensors in a combustion stream.  相似文献   

4.
V1−xyWxSiyO2 films for uncooled thermal detectors were coated on sodium-free glass slides with sol–gel process, followed by the calcination under a reducing atmosphere (Ar/H2 5%). The V1−xyWxSiyO2 films as prepared inherit various phase transition temperatures ranging from 20 to 70 °C depending on the dopant concentrations and the fabrication conditions. Compared to the hysteresis loop of plain VO2 films, a rather steep loop was obtained with the addition of tungsten components, while a relaxed hysteresis loop with the tight bandwidth was contributed by Si dopants. Furthermore, the films with switching temperature close to room temperature were fabricated to one-element bolometers to characterize their figures of merit. Results showed that the V0.905W0.02Si0.075O2 film presented a satisfactory responsivity of 2600 V/W and detectivity of 9 × 106 cm  Hz1/2/W with chopper frequencies ranging from 30 to 60 Hz at room temperature. It was proposed that with appropriate amount of silicon and tungsten dopants mixed in the VO2, the film would characterize both a relaxed hysteresis loop and a fair TCR value, which effectively reduced the magnitude of noise equivalent power without compromising its performance in detectivity and responsivity.  相似文献   

5.
R.R.  N.G.  Y.G.  A.A.  S.D.  D.M.  Ramphal   《Sensors and actuators. A, Physical》2007,140(2):207-214
Thin films of CdS, Bi2S3 and composite CdS–Bi2S3 have been deposited using modified chemical bath deposition (M-CBD) technique. The various preparative parameters were optimized to obtain good quality thin films. The as-deposited films of CdS, Bi2S3 and composite were annealed in Ar gas at 573 K for 1 h. A comparative study was made for as-deposited and annealed CdS, Bi2S3 and composite thin films. Annealing showed no change in crystal structure of these as-deposited films. However, an enhancement in grain size was observed by AFM studies. In addition change in band gap with annealing was seen. A study of spectral response, photosensitivity showed that the films can be used as a photosensor.  相似文献   

6.
Detection of low concentrations of petroleum gas was achieved using transparent conducting SnO2 thin films doped with 0–4 wt.% caesium (Cs), deposited by spray pyrolysis technique. The electrical resistance change of the films was evaluated in the presence of LPG upon doping with different concentrations of Cs at different working temperatures in the range 250–400 °C. The investigations showed that the tin oxide thin film doped with 2% Cs with a mean grain size of 18 nm at a deposition temperature of 325 °C showed the maximum sensor response (93.4%). At a deposition temperature of 285 °C, the film doped with 3% Cs with a mean grain size of 20 nm showed a high response of 90.0% consistently. The structural properties of Cs-doped SnO2 were studied by means of X-ray diffraction (XRD); the preferential orientation of the thin films was found to be along the (3 0 1) directions. The crystallite sizes of the films determined from XRD are found to vary between 15 and 60 nm. The electrical investigations revealed that Cs-doped SnO2 thin film conductivity in a petroleum gas ambience and subsequently the sensor response depended on the dopant concentration and the deposition temperature of the film. The sensors showed a rapid response at an operating temperature of 345 °C. The long-term stability of the sensors is also reported.  相似文献   

7.
Nanocrystalline cadmium indium oxide (CdIn2O4) thin films of different thicknesses were deposited by chemical spray pyrolysis technique and utilized as a liquefied petroleum gas (LPG) sensors. These CdIn2O4 films were characterized for their structural and morphological properties by means of X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The dependence of the LPG response on the operating temperature, LPG concentration and CdIn2O4 film thickness were investigated. The results showed that the phase structure and the LPG sensing properties changes with the different thicknesses. The maximum LPG response of 46% at the operation temperature of 673 K was achieved for the CdIn2O4 film of thickness of 695 nm. The CdIn2O4 thin films exhibited good response and rapid response/recovery characteristics to LPG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号