首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computational fluid dynamics (CFD) model was employed to investigate the hydrodynamics of the liquid–solid circulating fluidized bed (LSCFB). The numerical simulations of the flow in the LSCFB under different operating conditions, including different superficial liquid velocities, superficial solid velocities, particle densities and shapes, are carried out using the CFD model developed in the previous work. The numerical predictions show correct trends and good agreements with the experimental data. It is demonstrated that the radial non-uniformity and axial uniformity exist in the flow structures under different operating conditions. By increasing the superficial solid velocity, the average solids holdup and radial non-uniformity increase, while the opposite trends are observed by increasing the superficial liquid velocity. Besides, the solids holdup decreases with the decrease in the particle density. It is also observed that all the flow distributions in the radial and axial directions in LSCFBs are more uniform than those in GSCFBs.  相似文献   

2.
In the present study, erosion wear behavior of slurry pipeline due to solid–liquid suspension in the pipeline has been investigated using commercial computational fluid dynamics (CFD) code FLUENT. A multiphase Euler–Lagrange model was adopted to predict the solid particle erosion wear in a 90° pipe bend for the flow of bottom ash–water suspension. A standard k–ε turbulence modeling scheme was used to simulate the flow through the pipeline. Water and bottom ash were taken as liquid and as a dispersed phase of solid–liquid mixture, respectively. A simulation study for erosion wear in a pipe bend was carried out to investigate the influence of various parameters including velocity, solid concentration, and particle size. The velocity of the bottom ash–water suspension varied from 0.5 to 2.5?m/s for solid concentrations with a range of 2.5 to 10.0% (by volume). The particle diameters of the bottom ash were 162 and 300?µm. The simulation results agree with the results of previous studies.  相似文献   

3.
In many particulate processes suspensions need to be handled. Hydrodynamic forces in presence of a liquid as a surrounding continuum medium can significantly affect the particle collision behaviour. When particles approach a wall, lubrication force can become dominant with decreasing distance. This force was described analytically by different authors for a smooth flat wall. Roughness was found to be an important factor in this context, but the mechanisms are still not fully understood. In this work, the effects of topology on the lubrication force were studied using a regular prismatic micro-structured titanium surface produced by micro-milling. A nanoindentation setup was modified for the direct measurement of this force during the particle approach to polished and micro-structured surfaces in liquid. For a more detailed insight on the behaviour of the fluid in the decreasing gap between particle and surface microstructure, resolved computational fluid dynamics (CFD) simulations were performed using an overset mesh method. The comparison of simulation results with nanoindentation tests and analytical solution showed a good agreement. The effects of structure size and particle contact location at various approaching velocities on the lubrication force were investigated.  相似文献   

4.
The wetting dynamics of a drop of liquid (1) deposited on a solid on which there is already a thin layer of liquid (2) (contaminant, or maybe a wetting agent) is considered. Diffusion of liquid 2 into liquid 1 by Fickian diffusion leads to evolving effective solid/drop interfacial free energy, occurring during spreading, and modifying wetting kinetics. Spreading rate is increased. Strange behaviour is predicted near equilibrium conditions. The wetting line may “overshoot”, before receding asymptotically. The motion of a two‐dimensional drop is modelled, assuming it is given a slight push to one side after deposition. We expect a regime of spontaneous translational drop motion due to asymmetry in capillary conditions at the two triple lines. Diffusional wetting is compared to reactive wetting.  相似文献   

5.
A resolved CFD–DEM coupling model for the simulation of particulate flows is proposed in this work. The Volume Penalisation (VP) method, which is a family of the continuous forcing Immersed Boundary (IB) method, is employed to express the particle–fluid interaction. A smooth mask function is used to avoid sharp transition between the solid (particle) and fluid domains that may cause numerical oscillation with moving particles. Optimal permeability is employed to reduce the model error associated with the VP method. It is determined as a function of only the interface thickness and fluid kinematic viscosity. The proposed model is accurate, easy to implement with any discretisation scheme, and only requires small computational overhead for particle–fluid interaction. Several simulations are performed to test the validity of the proposed model in various systems, i.e. from dilute to relatively dense flows, and the results show good agreement with the exact solution or empirical correlation. It is found that the error can be scaled with the ratio between the gap and interface thickness. The proposed model is also applied to predict the relative viscosity of suspensions and the density segregation in fluidised beds.  相似文献   

6.
The rigorous optimization of the geometry of a glass cell with computational fluid dynamics (CFD) is performed. The cell will be used for non-invasive nuclear magnetic resonance (NMR) measurements on a single droplet levitated in a counter current of liquid in a conical tube. The objective function of the optimization describes the stability of the droplet position required for long-period NMR measurements. The direct problem and even more the optimization problem require an efficient method to handle the high numerical complexity implied. Here, the flow equations are solved two-dimensionally and in steady state with the finite-element code SEPRAN for a spherical droplet with ideally mobile interface. The optimization is performed by embedding the CFD solver SEPRAN in the optimization environment EFCOSS. The underlying derivatives are computed using the automatic differentiation software ADIFOR. An overall concept for the optimization process is developed, requiring a robust scheme for the discretization of the geometries as well as a model for horizontal stability in the axially symmetric case. The numerical results show that the previously employed measuring cell described by Schröter is less suitable to maintain a stable droplet position than the new cell.  相似文献   

7.
In this article, an attempt is made to develop a 3D gas–solid fluidized bed reactor (FBR). Basically, it deals with simulation of a FBR in computational fluid dynamics (CFD) using the software, Ansys Fluent v14. The simulation of gas–solid flow is carried out using Eulerian multifluid model which is integrated with the solid particle kinetic theory. The coefficients of exchange momentum are estimated using the Syamlal & O'Brien, Gidaspow, Wen-Yu, and Huilin–Gidaspow drag functions. The results of the simulation have been validated with the experimental data available in literature and had proven that the model is capable to predict the hydrodynamics of FBR. The variation in kinetic energy of the solid phase is calculated by varying the restitution coefficient (RC) from 0.90 to 0.99. The predictions of pressure drop compare excellently with the experimental data. Finally, the effect of particle diameter on the expanded bed height has been studied for FBR.  相似文献   

8.
The hydrodynamics of solid-liquid suspension process in a stirred tank with a dual rigid impeller, a dual rigid-flexible impeller, and a dual punched rigid-flexible impeller were investigated using computational fluid dynamics (CFD) simulation. A classical Eulerian-Eulerian approach coupled with standard k-ε turbulence model was employed to simulate solid-liquid turbulent flow in the stirred tank. The multiple reference frame (MRF) approach was used to simulate impeller rotation. The effects of impeller type, impeller speed, flexible connection piece width/length of dual rigid-flexible impeller, aperture size/ratio of dual punched rigid-flexible impeller, particle diameter, and liquid viscosity on the homogeneity degree of solid-liquid system were investigated. Results showed that the homogeneity degree of solid-liquid system increased with an increase in impeller speed. A long and wide flexible connection piece was conductive to solid particles suspension process. Larger particle diameter resulted in less homogenous distribution of solid particles. An increase in liquid viscosity was beneficial to maintain solid particles in suspension state. The optimum aperture ratio and aperture diameter were 12% and 8 mm, respectively, for solid particles suspension process. It was found that dual punched rigid-flexible impeller was more efficient in terms of solid particles suspension quality compared with dual rigid impeller and dual rigid-flexible impeller under the same power consumption.  相似文献   

9.
This study describes the development, implementation, and evaluation of an effective curriculum for students to learn computational fluid dynamics (CFD) in introductory and intermediate undergraduate and introductory graduate level courses/laboratories. The curriculum is designed for use at different universities with different courses/laboratories, learning objectives, applications, conditions, and exercise notes. The common objective is to teach students from novice to expert users who are well prepared for engineering practice. The study describes a CFD Educational Interface for hands‐on student experience, which mirrors actual engineering practice. The Educational Interface teaches CFD methodology and procedures through a step‐by‐step interactive implementation automating the CFD process. A hierarchical system of predefined active options facilitates use at introductory and intermediate levels, encouraging self‐learning, and eases transition to using industrial CFD codes. An independent evaluation documents successful learning outcomes and confirms the effectiveness of the interface for students in introductory and intermediate fluid mechanics courses.  相似文献   

10.
Gas-particle hydrodynamic behaviour inside a vortex chamber fluidized bed is studied numerically with respect to different design and operating conditions. A three-dimensional computational fluid dynamics (CFD) model of a cylindrical vortex chamber is developed. Simulations are carried out with particles and without particles. In order to understand the gas-particle flow behavior velocity distribution, particle volume fraction distribution, radial pressure distribution and axial pressure distribution inside the vortex chamber are analyzed in detail. Particles of different diameters are used and its effect on the gas-particle flow behaviour is studied. Design parameters like the number of gas inlet slots and slot width are varied and their impact on the hydrodynamics of the vortex chamber is investigated. The numerical model is validated by comparing the numerical results with experimental results reported in literature.  相似文献   

11.
The velocity and thermal behavior (temperature, enthalpy, solid fraction) of atomized droplets in a metal spray play the most important role in the spray forming process. These properties mainly determine the materials yield and the final product quality (e.g., porosity, microstructure) of the as-sprayed materials. Changing the gas temperature in the atomization process directly influences these droplet properties in the spray. To understand the droplet behavior in the spray at various atomization gas temperatures (i.e., room temperature RT 293 K, 573 K, 873 K), numerical simulations using computational fluid dynamics (CFD) techniques have been performed and validated by experiments. A series of atomization runs (powder production and spray-forming with AISI 52100 steel) has been conducted at different atomization gas temperatures and pressures with a close-coupled atomizer (CCA). The in-situ temperature detection of the deposit surface (pyrometer) and in the substrate (thermocouples) has been performed to observe the effect of particle properties on the deposit. The result shows that hot gas atomization provides smaller droplets with faster velocity in the spray, affecting the droplet impact and deformation time in the deposition zone. A higher solid fraction of the smaller droplets by hot gas atomization also reduces the deposit surface temperature. Increasing the substrate diameter further decreases the deposit surface temperature without compromising the deposit quality (i.e., porosity) and also refines the grain size. Pre-heating of the substrate up to 573 K results in lower porosity in the vicinity of the substrate.  相似文献   

12.
在对喷雾干燥塔内流动特点认识的基础上,采用较为成熟的计算流体力学(CFD)模型及算法,建立适用于硝基胍物料喷雾干燥的应用模型。利用Gambit软件对几何模型进行网格划分,导入Fluent中进行数值计算,预测塔内流场分布情况、液滴含水率及颗粒平均粒径等。通过测试样机干燥产品的含水率、产品粒度分布及场内温度分布等发现,预测结果与实验结果大致吻合,说明模拟结果有一定的准确度和可靠性。  相似文献   

13.
A mathematical model based on Eulerian/Lagrangian method has been developed to predict particle collection efficiency from a gas stream in an orifice scrubber. This model takes into account Eulerian approach for particle dispersion, Lagrangian approach for droplet movement and particle-source-in-cell (PSI-CELL) model for calculating droplet concentration distribution. In order to compute fluid velocity profiles, the normal k− turbulent flow model with inclusion of body force due to drag force between fluid and droplets has been used. Experimental data of Taheri et al. [J. Air Pollut. Control Assoc. 23 (11) (1973) 963] have been used to test the results of the mathematical model. The results from the model are in good agreement with the experimental data. After validating the model the effect of operating parameters such as liquid to gas flow rate ratio, gas velocity at orifice opening, and particle diameter were obtained on the collection efficiency.  相似文献   

14.
ABSTRACT

An improved angle droplet collection efficiency model for the intermediate flow regime is presented in this paper, taking into account both inertial impaction and interception mechanisms. This model uses the equations of motion that has been derived by performing a force balance on a particle interacting with the flow field of a spherical collector. The fluid flow field around the collector is assumed to be the approximate solution as developed by Hamielec and Johnson for Reynolds numbers ranging between 10 and 80 and Tomotika and Aoi for Reynolds numbers less than 1.0.

The results of this work indicate that the collection efficiencies calculated by using potential flow conditions may have overestimated the overall collection of particulate matter. It was identified that the transition from intermediate to potential flow occurs when the Reynolds number is about 80. The interpolation scheme for the single droplet collection efficiency proposed in this work can be used from Stokes flow to potential flow conditions including intermediate flow regime.  相似文献   

15.
A novel mixing principle utilising oscillating liquid columns was analysed numerically with regard to particle dispersion characteristics. For producing fluid oscillations a pipe (diameter 100 mm) was immersed centrally into a vessel (diameter 450 mm) filled with liquid (filling height 700 mm) and periodically pressurised (frequency 1.2 Hz). The outlet geometry of the central pipe, just ending near the vessel bottom, has a strong effect on mixing and was optimised in this study. The principle of a FPR-mixer does not require rotating stirrers and in the turbulent regime it has power numbers comparable to propellers. The numerical calculations were conducted by a Euler/Lagrange approach neglecting two-way coupling as well as inter-particle collisions for clarity in order to only focus on the effect of interfacial forces on particle dispersion. The continuous phase was calculated in an unsteady way based on the Reynolds-averaged equations combined with the k-ω-SST (shear stress transport) turbulence model. Lagrangian tracking was conducted considering all relevant forces; drag, gravity/buoyancy, fluid inertia, added mass, Basset force and transverse lift forces due to shear and particle rotation. The importance of these forces was analysed with respect to the turbulent particle Stokes number (considered range 0.004 < St < 10.0) and particle/liquid density ratio (i.e. 1.05, 1.5 and 2.5). Finally, the significance of Basset force and shear-rotation lift force (i.e. Magnus effect) on the dispersion process was quantified by mixing parameters.  相似文献   

16.
基于CFD/CSD耦合的颤振与动载荷分析方法   总被引:2,自引:1,他引:1       下载免费PDF全文
谢亮  徐敏  李杰  蔡天星 《振动与冲击》2012,31(3):106-110
采用CFD/CSD耦合方法,建立了气动弹性仿真系统。基于系统辨识的方法,使用Volterra级数建立了降阶模型(ROM),实现了颤振边界的快速求解,分别使用CFD/CSD全耦合方法与ROM完成了AGARD 445.6标模的颤振分析,计算结果与实验相符较好。使用ROM完成了带边条平直翼的颤振分析。使用CFD/CSD耦合方法计算了此机翼在飞行动压下的气弹响应,结果表明即使在颤振边界内,仍然有可能出现极限环振荡(LCO)。对此,分析了其气弹响应中的动载情况。结果表明基于CFD/CSD耦合的方法可以真实地仿真气弹响应过程,准确地分析气弹响应中的动态载荷情况  相似文献   

17.
Dilute horizontal pneumatic conveying has been the subject of this experimental and numerical study. Experiments were performed utilising a 6.5 m long, 0.075 m diameter horizontal pipe in conjunction with a laser-Doppler anemometry (LDA) system. Spherical glass beads with three different sizes 0.8–1 mm, 1.5 mm, and 2 mm were used. Simulations were carried out using the commercial discrete element method (DEM) software, EDEM, coupled with the computational fluid dynamics (CFD) package, FLUENT. Experimental results illustrated that, for mass solid loading ratios (SLRs) ranging from 2.3 to 3.5, the higher the particle diameter and solid loading ratio, the lower the particle velocity. From the simulation investigations it was concluded that the inclusion of the Magnus lift force had a crucial influence, with observed particle distributions in the upper part of the conveying line reproducible in the simulation only by implementing the Magnus lift force terms in the model equations.  相似文献   

18.
Accuracy of prediction of pressure losses plays a vital role in the design of multiphase flow systems. The present study focused on the development of a computational fluid dynamics model to predict these parameters conveniently and accurately. The main objective was to validate the developed model through comparison of its simulation results with existing experimental data and empirical correlations. Both pipeline and annular geometries were considered for validation. Several data sets that involved a significant variation in process conditions were used for the validation. All three phases—liquid (water), gas (air), and solid (sand)—were taken into account. The simulations were conducted using the workbench platform of ANSYS Fluent 16.2. The Eulerian model of multiphase flow and the Reynolds stress model of turbulence closure available in Fluent were used for the present study. The average velocities and volumetric concentrations of involved phases were specified as the inlet boundary conditions. The stationary surfaces of the flow channels were hydrodynamically considered as either smooth or rough walls, and the outlets were regarded as being open to the atmosphere. The simulation results of pressure loss showed a good agreement with the corresponding measured values as well as with the predictions of well-established correlations.  相似文献   

19.
The hydrodynamics of solid-liquid mixing process in a stirred tank with four pitched-blade impellers, fractal 1 impellers, and fractal 2 impellers were investigated using computational fluid dynamics (CFD) simulation. An Eulerian-Eulerian approach, standard k-ε turbulence model, and multiple reference frames (MRF) technique were employed to simulate the solid-liquid two-phase flow, turbulent flow, and impeller rotation, respectively. The effects of impeller speed, impeller type, impeller spacing, impeller blade tilt angle, impeller blade shape, solid particle size and initial solid particle loading on the solid particle suspension quality were investigated. Results showed that the homogenous degree of solid-liquid system increased with the increase of impeller speed. The impeller spacing of T5/6 and T and impeller blade tilt angle of 60° and 45° were appropriate for the solid-liquid suspension process. Fractal shape impeller was more efficient than jagged shape impeller in solid-liquid mixing process. Larger particle diameter and higher initial solid particle loading resulted in less homogenous distribution of solid particles. It was found that fractal impeller could improve the solid particle suspension quality compared with four pitched-blade impeller under the same power consumption, increasingly so with the fractal iteration number of fractal impeller. Moreover, fractal impeller reduced the size of impeller trailing vortex and consumed less power consumption compared with four pitched-blade impeller at the same impeller speed, and the more the number of fractal iteration, the higher the impeller energy utilization rate of fractal impeller.  相似文献   

20.
Formation of particle clusters in liquid–solid circulating fluidized beds significantly affects macroscopic hydrodynamic behavior of the system. A multi scale interfacial drag coefficient (MSD) is proposed to determine effects of particle clusters on the mesoscale structure, by taking momentum and energy balance of dense phase, dilute phase and interphase into account. Based on the transportation and suspension energy-minimization method, the multi scale interfacial drag coefficient model used in this work is combined with the Euler–Euler two fluid model to simulate the heterogeneous behaviors of liquid–solid circulating fluidized bed. It was found that the reduction in drag coefficient is at least an important factor for the simulation of clusters formation, and the core-annulus flow is observed in the riser. The liquid–solid flow regime was significantly affected by the down-flow of particles in the form of clusters near the walls of the riser. The calculated concentration of particles inside the riser compared reasonably well with the available experimental data obtained by Razzak et al.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号