首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of quenching temperature on microstructure and performance of Al‐bearing cast boron steel (ACBS) containing 0.25–0.45%C, 1.5–1.8%B and 1.4–1.6%Al were investigated by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X‐ray diffraction (XRD), Rockwell hardness and Vickers micro‐hardness tester. The results show that the solidification structures of cast steel consist of high hardness boride, ferrite, pearlite and a small quantity of martensite when 1.5–1.8%B and 1.4–1.6%Al are added into the carbon steel. The metallic matrix of ACBS changes into single martensite from the mixed structure of ferrite, pearlite and martensite along with the increase of quenching temperature. The increase of quenching temperature also leads to the transformation of boride from continuous shape to isolated shape. Moreover, the micro‐hardness of matrix and macroscopical hardness increase with the increase of quenching temperature. When the quenching temperature excels 1000°C, the hardness has a slight decrease. ACBS has good comprehensive properties after heat treatment at 1000°C.  相似文献   

2.
Selective laser melting is a laser‐based additive manufacturing process applying layer manufacturing technology and is used to produce dense parts from metallic powders. The application of selective laser melting on carbon steels is still limited due to difficulties arising from carbon content. This experimental investigation aims at gaining an understanding of the application of the process on ultra high carbon steel, which is a special alloy with remarkable structural properties suitable for different industrial applications. The feedstock ultra high carbon steel (2.1% C) powder, 20 μm to 106 μm was prepared by water atomizing technique. This powder was used for the selective laser melting to build specimens 10×10×40 mm in dimensions. To decrease the thermal stresses during layer by layer building, laser scanning was done through 5×5 mm random island patterns while layer thickness was 30 μm. Laser beam diameter, maximum power output, layer thickness and scan speed range were 0.2 mm, 100 W, 30 μm and 50–200 mm/s respectively. The process was done inside high purity nitrogen environment, with less than 0.5% oxygen content. The results illustrate the influence of scan speed from 50 to 200 mm/s on product geometry and dimensions, surface roughness, internal porosity and cracks, microstructure and surface hardness. The effect of post heat treatment by heating and holding for one hour (annealing) at different temperatures of 700°C, 750°C, 950°C is studied. The results indicate that selective laser melting is able to produce near to 95% density of ultra high carbon steel parts with acceptable geometry and surface quality. Porosity cracks, and microstructure formed during the process could be controlled through proper selection of process parameters and post heat treatment. Industrial ultra high carbon steel products can be rapidly fabricated by selective laser melting.  相似文献   

3.
About the interrelation between carbon content in steels and the martensite hardness The hardenability of steels, identified by the interrelation between carbon content and available maximum hardness in a full martensitic microstructure is important for decision in case of steel selection and optimal construction of components. In the industrial practice formulas for calculation were used, deduced from the classic statements of Hodge/Orehoski and Burns/Moore/Archer. But the calculated results are significantly different. For a more exactly view datas of the “Atlas zur Wärmebehandlung der Stähle” were used. The better results are to expect by using the formula of Just. The application is also important for case hardening. It can be concluded that a lower carbon content than 0,35 mass‐%, the value usual is used, is sufficient to arrive a limit hardness of 52.5 HRC or 550 HV for determination of the case hardening depth. This confirms with the investigations of the AWT‐Fachausschuß 5/AK4. There has been found a formula of interrelation between carbon content and martensite hardness that gives a curve identical with the curve from Burns/Moore/Archer.  相似文献   

4.
Using self‐made electromagnetic centrifugal casting machine, optical microscopy (OM) and D/max2200pc X‐ray diffraction, the solidification microstructure and phases of as‐cast high speed steel(HSS) roll made by sand casting, centrifugal casting and electromagnetic centrifugal casting were investigated. The experiment results show that the phases of as‐cast high speed steel (HSS) roll are alloy carbide (such as W2C, VC, Cr7C3), martensite and austenite. The centrifugal casting and electromagnetic centrifugal casting can apparently improve the solidification structure of HSS roll. With the increase of electromagnetic field intensity (B), the volume fraction of austenite in the HSS solidification structure increased obviously and eutectic ledeburite decreased, the secondary carbide precipitated from the austenite is more fine and distribution of secondary carbide is more even.  相似文献   

5.
The billets of M3 high speed steel (HSS) with or without niobium addition were prepared via spray forming and forging, and the corresponding microstructures, properties were characterized and analysed. Finer and uniformly‐distributed grains without macrosegregation appear in the as‐deposited high speed steel that are different to the as‐cast high speed steel, and the primary austenite grain size can be decreased with 2% niobium addition. Niobium appears in primary MC‐type carbides to form Nb6C5 in MN2 high speed steel, whereas it contributes less to the creation of eutectic M6C‐type carbides. With same treatments to forged MN2 high speed steel and M3 high speed steel, it is found that the peak hardness of these two steels are almost the same, but the temper‐softening resistance of the former is better. With higher high‐temperature hardness of the forged MN2 high speed steel, its temper softening above 600 °C tends to slow down, which is related to the precipitation of the secondary carbides after tempering. A satisfactory solid solubility of Vanadium and Molybdenum can be obtained by Nb substitution, precipitation strengthening induced by larger numbers of nano‐scaled MC and M2C secondary carbides accounts for the primary role of determining higher hardness of MN2 high speed steel. The results of the wear tests show that the abrasive and adhesive wear resistance of MN2 high speed steel can be improved by the grain refinement, existence of harder niobium‐containing MC carbides, as well as solute strengthening by more solute atoms. The oxidational wear behavior of MN2 high speed steel can be markedly influenced by the presence of the high hardness and stabilization of primary niobium‐containing MC‐type carbides embedded in the matrix tested at 500 °C or increased loads. The primary MC carbides with much finer sizes and uniform distribution induced by the combined effects of niobium addition and atomization/deposition would be greatly responsible for the good friction performance of the forged MN2 high speed steel.  相似文献   

6.
The γ2‐Phase and their Effects on the Properties of Complex Aluminium Bronzes In this report the effects of the chemical composition and of the processing on the microstructure and some properties of complex aluminium bronzes are presented. Especially the formation and the forms of the γ2‐phase in the microstructure and relationships between the microstructures and the properties of the alloys are described.  相似文献   

7.
A Fe‐based composite coating reinforced by in situ synthesized TiC particles was fabricated on Cr12MoV steel by using 6 KW fiber laser cladding. A serial of experiment has been carried out with different laser power, scanning speed, and powder feed rate, from which TiC could be in situ synthesized only in certain realms laser cladding parameters. X‐ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscope and a hardness tester are used to test the microstructure, micro‐hardness and component distribution. The coating is mainly composed of alpha ;‐Fe, TiC and Fe3C. TiC particles were commonly precipitated in three kinds of morphologies, such as quadrangle, cluster, and flower‐like shape. The grains were refined, and there were no cracks and few stomas. Defect‐free coating with metallurgical joint to the substrate was obtained. TiC distributed more concentratively in the upper layers than the middle and bottom layers. From the surface of cladding layer 0.8 mm the highest micro‐hardness was up to HV930, obviously higher than that of the substrate.  相似文献   

8.
The application of the dynamic indentation method for estimation of the hardness of coated structures has been investigated.  相似文献   

9.
Laser clad Ni60A/WC composite coating was fabricated on the surface of Q235 steel by using 6 kW fiber laser. The morphology, composition, and microhardness of composite coating were studied by using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X‐ray diffraction (XRD), and micro‐hardness tester. The results show that in the process of fiber laser cladding Ni60A/WC composite coating, residual WC particles partially dissolve and react with other elements to form eutectics, which exists in the shape of lumpy, strip and spherical. The main structures of laser cladding are γ‐Ni, WC, W2C, M7C3, M23C6 etc. From the hardness analysis, the average hardness of the composite coating is four times of the substrate.  相似文献   

10.
High‐boron high‐speed steel (HSS) is a cheap roll material. In the paper, the authors research the effect of heat treatment on the microstructure and properties of high‐boron high‐speed steel HSS roll containing 0.54% C, 1.96% B, 3.82% W, 7.06% Mo, 5.23% Cr and 2.62% Al by means of the optical microscopy (OM), the scanning electron microscopy (SEM), X‐ray diffraction (XRD) and hardness test. The results showed that as‐cast structure of boron‐bearing high‐speed steel HSS consisted of martensite, pearlite, M2(B, C), M3(B, C) and M23(B, C)6 type borocarbides. After quenching, the matrix transformed into the lath martensite, and M3(B, C) dissolved into the matrix. When quenching temperature is lower than 1050°C, the hardness is increased with the increase of quenching temperature under oil cooling, while quenching temperature excels 1100°C, the hardness will decrease with the increase of quenching temperature. Under the condition of salt bath and air cooling, the effect of quenching temperature on the hardness is similar to the above law, but the quenching temperature obtaining the highest hardness is higher than that of oil cooling. The highest hardness is obtained while tempering at 525°C. The hardness of high‐boron high‐speed steel HSS roll is 66.5 HRC, and its impact toughness excels 13.1 J/cm2. Using in pre‐finishing stands of high‐speed hot wire‐rod rolling mill, the wear rate of high‐boron HSS rolls is 0.26 mm/one thousand tons steel. However the manufacturing cost of high‐boron HSS rolls is obviously lower than that of powder metallurgy hard alloy rolls, it is only 28% of that of powder metallurgy (PM) hard alloy rolls.  相似文献   

11.
Bainitic cast steel is a kind of wear resistant material which has high strength and toughness, and can usually be obtained by isothermal quenching or molybdenum alloying. However, isothermal quenching has lower production efficiency and molybdenum alloying has higher production cost. In this paper, according to the characteristics that manganese and boron elements delayed the pearlitic transformation, the authors developed a new type of self‐hardening bainitic cast steel in which manganese and boron were main alloy elements and a small amount of titanium, nitrogen, calcium, barium and yttrium elements were also added in the steel that could refine and purify the solidification structure of steel. On this basis, the author studied the effect of tempering treatment on microstructures, mechanical properties and wear resistance of bainitic cast steel. The results showed that impact toughness of bainitic cast steel increased ceaselessly with the increase of tempering temperature, and there was tempering brittleness while tempering from 450°C–500°C. Moreover, the hardness of bainitic cast steel decreased with the increase of tempering temperature, and hardness decreased slowly and maintained at 55HRC or above when tempering temperature was lower than 300°C. Under the condition of two‐body pin‐on‐disc wear, the wear resistance of bainitic cast steel decreased with the increase of tempering temperature, but bainitic cast steel tempering at 300°C had excellent wear resistance in the condition of impact wear. In the practical use, the bucket teeth of excavator and the hammer of crusher making from self‐hardening bainitic cast steel were safe and reliable, and their service life were increased by 120–150% than Hadfield manganese steel.  相似文献   

12.
This paper focuses on the effects of heat treatment parameters on the microstructural and mechanical properties of quenchable 30MnB5 steel. Heat treatment parameters, such as different cooling media and different heating times at the same temperature, were investigated and compared. Tensile and hardness tests were performed at room temperature, and then the microstructures of the specimens were studied using optical microscopy and the results were compared. The results showed that boron steel heat treated using a water quenching process exhibited the best mechanical properties because of the formation of a martensitic microstructure.  相似文献   

13.
In this paper, we design and prepare five kinds of high‐boron high‐speed steel roll materials. The microstructure, mechanical property and wear resistance of high‐boron high‐speed steel roll materials were studied by means of optical microscopy (OM), scanning electron microscopy (SEM), X‐ray diffraction (XRD) and hardness measurement, impact test and abrasion test. The results show that as‐cast microstructure of high‐boron high‐speed steel consists of martensite, retained austenite and borocarbide. Hardness of as‐cast high‐boron high‐speed steel excels 64 HRC. In unmodified high‐boron high‐speed steel, eutectic borocarbide is distributed in a network along the grain boundary. With the addition of RE‐Mg‐Ti compound modifier, the networks of borocarbide is broken. The hardness of high‐boron high‐speed steel gradually decreased with the increase of tempering temperature. Under the same conditions, the impact toughness of unmodified high‐boron high‐speed steel roll material is slightly lower than that of modified steel. The wear resistance of modified high‐boron high‐speed steel roll material is greater than that of high‐carbon high‐vanadium high‐speed steel roll.  相似文献   

14.
The equilibrium solidified phase diagrams of high boron high speed steel have been calculated and the vertical section of iron‐carbon pseudo‐binary phase diagrams has been drawn with different aluminum concentration. The effect of aluminum on phase diagrams and solidification microstructure has been investigated by using optical microscope, scanning electron microscopy, X‐ray diffraction, and differential scanning calorimetry. The results show that the austenite region shrinks to a small area and the δ‐iron changes into α‐iron directly during cooling process when the aluminum content reaches 1.5 wt.%. The addition of excessive amount of aluminum favors the formation of ferrite, which leads to the hardness decreasing. Moreover, excessive amount of aluminum (Al≥1.5 wt.%) will make network M2B borocarbides tend to break. Alloying with aluminum raises the solubility of carbon in the matrix and reduces the quenched hardness. The calculation results are agreed with the ones from experimental. The calculation of phase diagrams method has been successfully used for the computation of phase equilibrium in the multi‐component high boron high‐speed steel system. The work provides a practical method for engineers and researchers in related areas.  相似文献   

15.
Heat treatment is of great significance to the performance improvement of high speed steel. Via heat treatment, the microstructure of high speed steel can be improved, thus greatly improving the material performance. The effect of tempering temperature on the microstructure of aluminium-bearing high boron high speed steel (AB-HSS) was investigated by optical microscope (OM), scanning electron microscope (SEM) and x-ray diffraction (XRD). The hardness and wear resistance of the alloy at different tempering temperatures were tested by Rockwell hardness tester, micro-hardness tester and wear tester. The experimental results indicate that the tempering microstructure of aluminium-bearing high boron high speed steel consists of α-Fe, M2B and a few of M23(C, B)6. Tempering temperature could greatly affect the wear resistance of materials. With the increase of tempering temperature, the wear resistance of aluminium-bearing high boron high speed steel firstly increase and then decrease. The alloy tempered at 450 °C has the best wear resistance and minimum wear weight loss. This study provides a reference for the formulation of heat treatment process of aluminium-bearing high boron high speed steel.  相似文献   

16.
Ni3Si alloy with different content of titanium was fabricated by powder metallurgy method. The microstructures, hardness and tribological properties of the alloys were investigation. The results showed that pure Ni3Si alloy was composed of β1‐Ni3Si phase and γ‐Ni31Si12 phase, and Ni3Ti phase formed with titanium addition. The hardness of the alloy decreased with the increasing titanium content. The friction coefficient of pure Ni3Si alloy increased with the increasing load, while the friction coefficient of the alloy with titanium addition decreased. The wear rates of the alloys were all increased with increasing load, and the alloy with 5 % titanium addition had the best wear resistance properties. The wear mechanisms of the alloys were abrasive wear at low load, and the wear mechanisms changed to oxidative wear at high load.  相似文献   

17.
In this article, the effect of heat treatment in different quenching temperature on microstructure and hardness of Fe‐Cr‐B alloy was studied, by contrast with boron‐free Fe‐Cr alloy. The results indicated that microstructure of boron‐free Fe‐Cr alloy consisted of the martensite and a few (Cr, Fe)7C3 type carbide. The microstructures had no obvious change with the increase of quenching temperature, but its hardness increased from 51.5 HRC to 60.8 HRC. When boron element was added into the Fe‐Cr alloy, the netlike eutectic structure began to break and spheroidizing after quenching, in which the borocarbide turned into spherical groups and network Fe2B phase was broken. Moreover, the portion of martensite increased, and the amount of secondary carbide decreased, and the size of secondary carbide began to largen after quenching. When the quenching temperature reached 1100°C, secondary carbide particles dissolved in the matrix wholly. The hardness of Fe‐Cr‐B alloy increased with the increase of quenching temperature below 1050°C. The hardness of sample containing 2.0% B and quenching at 1050°C reached 66.7 HRC. The hardness of Fe‐Cr‐B alloy had no obvious change when quenching temperature continued to increase. After tempered at 200°C, the microstructure of Fe‐Cr‐B alloy had no significant change and its hardness had slight decrease. The hardness of sample containing 2.0% B tempered at 200°C reached 63.9 HRC.  相似文献   

18.
Surface welding with duplex stainless steel was performed to enhance the wear and corrosion properties of grey cast iron, which is used as material for applications as pump components in maritime and chemical environments. The method used for surface welding and the corresponding process parameters determine the chemical composition and microstructure, which both determine the corrosion and wear properties of the surface layer. High heat input leads to high chemical dilution and thus, reduced corrosion resistance. Slow cooling rates, which are recommended for welding of grey cast iron components, facilitate the formation of carbides in the fusion zone of the chromium‐rich duplex stainless steel surface layer. On the one hand, carbides lead to increased hardness and thus, improved wear resistance of the surface layers. On the other hand, carbides and high chemical dilution rates reduce the corrosion resistance and therefore should be avoided. Under high cooling rates, the risk of cracking in the heat affected zone of the grey cast iron increases due to martensitic phase transformations. The paper describes the correlation of process parameters, microstructure and chemical composition with a focus on carbon diffusion and carbide formation, ever considering the effect on the wear behaviour in an oscillation tribometer and under erosion‐corrosion conditions.  相似文献   

19.
Direct hot extrusion is an alternative process for recycling aluminium without melting the scrap. It utilizes low energy and is environmental friendly. This paper reports the microhardness and microstructure of aluminium alloy chips when subjected to various settings of preheating temperature and preheating time in hot extrusion process. Three values of preheating temperature are taken as 450 °C, 500 °C, and 550 °C. On the other hand, three values of preheating time were chosen (1 h, 2 h, 3 h). The influences of the process parameters (preheating temperature and time) are analyzed using design of experiments approach whereby full factorial design with center point analysis are adopted. The total runs are 11 and they comprise of two factors of full factorial design with 3 center points. The responses are microhardness and microstructure. The results show that microhardness increases with the decrease of the preheating temperature. The results also show that the preheating temperature is more important to be controlled rather than the preheating time in microhardness analyses. The profile extrudes at 450 °C and 1 hour has gained the optimum microhardness and it can be concluded that setting temperature at 550 °C for 3 hours results in the highest responses for average grain sizes in analysis of microstructure.  相似文献   

20.
Fe–B–C wear‐resistant alloy, as a new type of iron‐based wear‐resistant materials, has drawn extensive attention of the researchers in materials at home and abroad. The boron concentration plays an important role in the microstructure and mechanical properties of Fe–B–C wear‐resistant alloy. In this paper, the solidification microstructure, volume fraction of eutectic, macro and micro hardness of Fe–B–C alloy are researched. The samples are measured by optical microscopy (OM), scanning electron microscopy (SEM), Rockwell‐hardness tester, Vickers‐hardness tester. Image processing software such as image‐pro and photoshop are used. The content of boron in experiment alloys are 1.0%, 1.5%, 2.0%, 2.5% and 3.0% respectively. As a result, the solidification microstructure of as‐cast Fe–B–C mainly consists of metallic matrix and eutectic structure. The eutectic phase is continuous netlike distribution along the grain boundary. As boron concentration increases, the volume fraction of borocarbide increases in the matrix, and the size is larger. The hardness of Fe–B–C also has a tendency to rise with the increase of boron concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号