首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diffusion brazing of aluminium by PVD applied filler metals Diffusion brazing of aluminium and aluminium alloys precoated with filler metal components enables fluxless wetting and obtains braze joints of high strength at moderate brazing temperatures. Previously deposited components of filler metals on the base materials as thin film, using Arc‐PVD‐process lead during a subsequently diffusion brazing process to the formation of a local liquid phase (transient liquid phase). The liquid phase is formed from the deposited thin film material and the base material and is solidified isotherm due to diffusion procedures. In doing so braze joints of higher melting point than brazing temperature can be realised. In this work, vacuum brazing of the two systems, Al‐Cu and Al‐Cu‐Si have been investigated. Cu and Al‐Cu‐Si were deposited on the base material using Arc‐PVD‐process. The base materials were pure aluminum and EN‐AW6060. Metallographic and scanning electron microscope analyses proved that the braze seam area after the completed diffusion brazing process shows similar structure and composition as the base material.  相似文献   

2.
Al-Ti异种合金真空钎焊的研究   总被引:9,自引:0,他引:9  
在结合界面上生成层状的脆而硬的金属化合物(TiAl3,TiAl和Ti3Al)是Al-Ti异种合金焊接所存在的主要问题,本工作基一协内外研究成果和相关资料,利用正蛟设计在理,以Al-11.5Si近共晶合金为基,通过添加元素Sn和Ga形成9种钎料,并利用各新钎料对Al合金和Ti合金进行了真空钎焊,勇于强度试验和铺展性试验,对该9种钎料进行评定,试验结果表明,含10%Sn,0.20%GAa的Al-11.5Si铝基钎料铺展性和抗剪强度等方面都具有较好的性能,使Al-Ti异种合金构件达到较好的机械性能。  相似文献   

3.
Microstructural and mechanical properties of laser welded sheets of magnesium AZ31‐HP with and without filler wires This paper describes Nd:YAG laser beam welding experiments carried out on rolled 2.5 mm thick magnesium sheet AZ31‐HP. For the butt welds in flat position, filler wires AZ31X and AZ61A‐F were used, diameter 1.2 mm. The microstructure and mechanical properties of the different laser beam welded joints were examined and compared with one another. The obtained results show that the laser beam welding of AZ31‐HP sheet is possible without hot crack formation, both without and with filler wires. The determined tensile strength, ductility, fracture toughness and microhardness of laser beam welded joints without filler wire were not effected by AZ31X nor AZ61A‐F. By use of these filler wires loss of zinc was minimized and the shape of weldments was optimized. The values of fracture strength, yield strength and microhardness of the joints and base material are quite similar. It is found that the ductility of the joints is lower than the base materials due to the heterogeneous microstructure of the fusion zones and geometrical notches of the weld seams. Both, weld and base material of AZ31‐HP, showed stable crack propagation. Furthermore, for base material slightly lower fracture toughness values CTOD than for the joints were determined.  相似文献   

4.
石玗  周相龙  朱明  顾玉芬  樊丁 《材料导报》2017,31(10):61-64
采用脉冲旁路耦合电弧MIG熔钎焊方法对1060纯铝和T2紫铜进行了对接焊,选用ER1100、ER5356、ER4043和ER4047四种焊丝为填充材料,研究了焊丝成分对焊接接头微观组织、金属间化合物层的厚度以及力学性能的影响规律。结果表明:4种焊丝的焊接接头均由铝侧熔合区、焊缝区和铜侧钎焊区组成,其中铜侧钎焊区又可细分为金属间化合物层区和Al-Cu共晶区两部分。焊丝中Si元素的加入可以起到阻碍铝铜原子互扩散、抑制铝铜金属间化合物生长、提高焊缝显微硬度以及抗拉强度等作用;而加入Mg元素,其效果不明显。  相似文献   

5.
铝基钎料在SiC及SiC_p/6061复合材料上的润湿性研究   总被引:1,自引:0,他引:1  
对多种铝基钎料在SiC、6 0 6 1及SiCp 6 0 6 1复合材料上进行了润湿性试验。结果表明 :炉中钎焊时 ,钎料与钎剂的成分、加热温度与保温时间、钎料与钎剂熔化温度的匹配等是影响铝基钎料润湿性的主要因素 ;真空钎焊时 ,镁含量不同的各种含镁Al 2 8Cu 5Si钎料在Al基复合材料连接的温度范围内都不能润湿SiC陶瓷表面 ;配合QJ2 0 1钎剂 ,Al 2 8Cu 5Si 2Mg钎料对 15 %SiCp 6 0 6 1Al复合材料具有良好的润湿性 ,但对 30 %SiCp 6 0 6 1Al复合材料却润湿不良 ;在加钎剂的情况下 ,钎料中的镁反而对在铝合金及铝基复合材料上的润湿性有不利影响 ;在Al 2 8Cu 5Si 2Mg钎料和 15 %SiCp 6 0 6 1Al复合材料的钎焊界面处存在SiC颗粒的偏聚现象  相似文献   

6.
Plasma nitriding of aluminum alloys is a suitable method for improving wear resistance because of the hard ceramic AlN layer formed. However, the surface's load‐bearing behavior is greatly limited by the low hardness of the Al base material. New investigations regarding improved load support of the thin AlN layer examine the treatment sequence of nitriding and subsequent EB remelting. Because of its broad range of beneficial alloying elements (Si, Fe, Cu, Mg), a hypereutectic Al–Si alloy (DISPAL® S232) ? made by spray forming ? was used as the base material. The electron beam remelting process is carried out on samples with a nitride layer thickness of approx. 3 μm. As a result of the newly formed phases, grain refinement, and oversaturation of the aluminum solid solution, the surface hardness beneath the nitride layer can be increased by up to three times compared to that of the initial base material. The estimated enhancement in load support is evaluated by unlubricated wear tests using a pin‐on‐disc configuration and scratch tests under constant loading conditions. Furthermore, the wear mechanisms are investigated by means of detailed SEM examination of the remelted surface layer.
  相似文献   

7.
The effect of 0.5?wt-% SiC nanoparticle addition on microstructure and brazeability of Al–9Si–20Cu alloys has been investigated. The brazing is performed using the filler at 550°C for 30?min. Microstructural observations reveal the refinement of Si and CuAl2 in Al–9Si–20Cu–0.5SiC composite. The average size of Si particles decreases from ~9 to ~4?μm. It has been shown that SiC nanoparticles improve the filler brazeability; the spreading ratio increases up to 88.4% as compared to 76.67% over Al–9Si–20Cu alloy. The tensile strength and ductility of Al–9Si–20Cu–0.5SiC are also enhanced by 47 and 53% respectively. The melting point shows a depression ~4°C in Al–9Si–20Cu–0.5SiC and thus can be a potential filler candidate for brazing industries.  相似文献   

8.
Dissimilar metals of AA6013 aluminum alloy and Q235 low-carbon steel of 2.5 mm thickness were butt joined using a 10 kW fiber laser welding system with ER4043 filler metal. The study indicates that it is feasible to join aluminum alloy to steel by butt joints when zinc layer was hot-dip galvanized at the steel’s groove face in advance, and better weld appearance can be obtained at appropriate welding parameters. The joints had dual characteristics of a welding joint on the aluminum side and a brazing joint on the steel side. The smooth Fe2Al5 layer adjacent to the steel matrix and the serrated-shape FeAl3 layer close to the weld metal were formed at the brazing interface. The overall thickness of Fe–Al intermetallic compounds layers produced in this experiment were varied from 1.8 μm to 6.2 μm at various welding parameters with laser power of 2.85–3.05 kW and wire feed speed of 5–7 m/min. The Al/steel butt joints were failed at the brazing interface during the tensile test and reached the maximum tensile strength of 120 MPa.  相似文献   

9.
钎料的性能很大程度上决定了钎焊接头的质量和钎料的应用范畴.银基钎料作为一类非常重要的硬钎焊材料,其填缝能力优异,强度与黄铜、低碳钢接近,可钎焊除铝、镁合金等轻金属之外的所有金属材料.因此,银基钎料广泛应用于航空航天、超硬工具等制造领域,并且受到国内外钎焊界学者们的高度关注.然而,银基钎料的发展及应用过程中仍存在以下问题:第一,钎料中贵金属银含量偏高(一般高于45%),导致钎料使用成本高;第二,银基钎料挤压、轧制、拉拔等加工过程中不可避免地存在夹杂物,影响钎料的使用性能和连接质量;第三,有益金属或合金调控钎料及其连接性能的机制较为复杂,尚未完全研究清楚;第四,传统制备银基钎料的方法产能低下;第五,银基钎料在制造业领域的应用研究尚未见系统报道.国内外对于银基钎料钎焊性能及工程应用方面的研究主要集中于:(1)开发多种节银降银钎料,主要是有益元素调控银基钎料连接性能方面的研究;(2)改进钎料的传统加工方法,提出新的制造方法,如粉末电磁压制成形、钎焊过程中原位合成、快速凝固、镀覆扩散组合等;(3)研究杂质元素(C、Ca、S、Al、Fe、Bi、Pb、O、N 等)的影响;(4)银基钎料形态创新研究,如三明治复合钎料(中间为铜合金、两边为银钎料)、箔带钎料、镀锡银钎料等;(5)工程应用研究,银基钎料在航空航天、汽车制造、电力能源等工业领域起着不可替代的作用,但目前国内外仍缺乏系统阐述该方面研究的报道.因此,本文对近20年国内外有关银基钎料的研究报道进行了评述,重点讨论了合金元素对银基钎料性能的影响.首先对银基钎料研究现状进行详述,总结了Cu、Zn、Sn、Ga、In、Ni、Mn、Cd、Li、Ce、La、P、Si、Pr在银基钎料中的优缺点,归纳了杂质元素C、S、O、N、Ca、Al、Fe、Pb、Bi的恶化作用.其次对银基钎料在航空航天、汽车制造、电力能源、超硬工具、家用电器、眼镜行业等制造业中的应用研究进行详细介绍.最后提出银基钎料研究和应用中的不足,为银基钎料的深入系统研究及相关技术发展提供理论指导.  相似文献   

10.
Rapidly solidified Al–8.5Si–25Cu–xY (wt-%, x?=?0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) foils were used as filler metal to braze Al matrix composites with high SiC particle content (SiCp/Al-MMCs), and the filler presented fine microstructure and good wettability on the composites. The joint shear strength first increased, then decreased and a sound joint with a maximum shear strength of 135.32?MPa was achieved using Al–8.5Si–25Cu–0.3Y as the filler metal. After Y exceeded 0.3%, a needle-like intermetallic compound, Al3Y, was found in the brazing seam, resulting in a dramatic decline in the shear strength of the brazed joints. In this research, the Al–8.5Si–25Cu–0.3Y filler metal foil was found to be suitable for the brazing of SiCp/Al-MMCs with high SiC particle content.  相似文献   

11.
Light‐weight aluminum (Al) alloys have widespread applications. However, most Al alloys have inherently low mechanical strength. Nanotwins can induce high strength and ductility in metallic materials. Yet, introducing high‐density growth twins into Al remains difficult due to its ultrahigh stacking‐fault energy. In this study, it is shown that incorporating merely several atomic percent of Fe solutes into Al enables the formation of nanotwinned (nt) columnar grains with high‐density 9R phase in Al(Fe) solid solutions. The nt Al–Fe alloy coatings reach a maximum hardness of ≈5.5 GPa, one of the strongest binary Al alloys ever created. In situ uniaxial compressions show that the nt Al–Fe alloys populated with 9R phase have flow stress exceeding 1.5 GPa, comparable to high‐strength steels. Molecular dynamics simulations reveal that high strength and hardening ability of Al–Fe alloys arise mainly from the high‐density 9R phase and nanoscale grain sizes.  相似文献   

12.
Brazing of Ti3AI alloys with the filler metal Cu-P was carried out at 1173-1273 K for 60-1800 s. When products are brazed, the optimum brazing parameters are as follows: brazing temperature is 1215-1225 K; brazing time is 250-300 s. Four kinds of reaction products were observed during the brazing of Ti3AI alloys with the filler metal Cu-P, i.e., Ti3AI phase with a small quantity of Cu (Ti3AI(Cu)) formed close to the Ti3AI alloy; the TiCu intermetallic compounds layer and the Cu3P intermetallic compounds layer formed between Ti3AI(Cu) and the filler metal, and a Cu-base solid solution formed with the dispersed Cu3P in the middle of the joint. The interfacial structure of brazed Ti3AI alloys joints with the filler metal Cu-P is Ti3AI/Ti3AI(Cu)/TiCu/Cu3P/Cu solid solution (Cu3P)/Cu3P/TiCu/Ti3AI(Cu)/Ti3AI, and this structure will not change with brazing time once it forms. The thickness of TiCu+Cu3P intermetallic compounds increases with brazing time according to a parabolic law. The activation energy Q and the growth velocity K0 of reaction layer TiCu+Cu3P in the brazed joints of Ti3AI alloys with the filler metal Cu-P are 286 kJ/mol and 0.0821 m2/s, respectively, and growth formula was y2=0.0821exp(-34421.59/T)t. Careful control of the growth for the reaction layer TiCu+Cu3P can influence the final joint strength. The formation of the intermetallic compounds TiCu+Cu3P results in embrittlement of the joint and poor joint properties. The Cu-P filler metal is not fit for obtaining a high-quality joint of Ti3AI brazed.  相似文献   

13.
目的研究不同工艺参数下钎料Zn的添加对Al/Mg异种金属搅拌摩擦焊-钎焊焊接接头组织和性能的影响。方法以厚度为0.05 mm的纯Zn作为钎料,对3 mm厚的2A12-T4态铝合金和4 mm厚的AZ31变形镁合金,进行搅拌摩擦焊-钎焊的复合焊接,分析锌夹层的添加对接头微观组织与力学性能的影响。结果当添加Zn中间层时,接头钎焊区缓解了拉伸断裂趋势,在焊接速度为23.5 mm/min,旋转速度为375 r/min时,接头抗拉剪力达到5.5 k N,复合焊接接头的钎焊焊缝由搭接区、固相扩散区、钎焊区组成。结论钎料的添加有效阻止了Al-Mg系金属间化合物的形成。  相似文献   

14.
Engine designers show continued interest in γ‐TiAl based titanium aluminides as light–weight structural materials to be used at moderately elevated temperatures. Although alloy development has made significant progress in terms of mechanical properties and environmental resistance, protective coatings have been developed that help to extend the lifetime of these alloys significantly. The major challenge of coating development is to prevent the formation of fast growing titania. Furthermore, changes of coating chemistries at high temperatures have to be considered in order to avoid rapid degradation of the coatings due to interdiffusion between substrate and coating. The paper describes recent work of the authors on different coatings produced by means of magnetron sputter technique. Thin ceramic Ti‐Al‐Cr‐Y‐N layers tested at 900 °C exhibited poor oxidation resistance. In contrast, intermetallic Ti‐Al‐Cr, Si‐based and aluminum rich Ti‐Al coatings were tested at exposure temperatures up to 950 °C for 1000h resulting in reasonable and partially excellent oxidation behaviour.  相似文献   

15.
采用两步钎焊方法来完成梯度材料的制备:第一步,选用Ti-Zr-Cu-Ni-Co急冷态箔带钎料钎焊TC4/TiAl接头,钎焊规范选为960℃/10min;第二步,采用高纯度的Al,Cu和Si粉末混合配制Al-25Cu-5Si钎料,用于钎焊TiAl/LF21接头,钎焊规范选为590℃/10min.结果表明,两步钎焊法成功实...  相似文献   

16.
The demand of prostheses and implants made from biomaterials grows as a result of the rising age of patients. For biomaterials, such as those found in joint‐ or hip‐prostheses, that are in direct contact with the organism, not only mechanical stability is required, but also biocompatibility as well as their ability to support bone regeneration. Taking this into account, a thin‐walled bioactive titanium cobalt‐based brazing coating on high‐performance oxide ceramics (Al2O3) has been developed. Here, the coating process offers an economical and at the same time technologically simple way for the coating ceramic materials. The biocompatible coating has been enhanced by addition of bioactive particles made of bioglass and calcium phosphates in order to improve bone formation. The reactions between the bioactive particles and the brazing alloys, as well as the particular melting behavior, were determined through thermo analytical methods. The structures of the brazing alloys enriched with bioactive particles were investigated through metallographical methods. The combination of three bioactive additives and two brazing alloys were analyzed in terms of their melting behavior and the resulting porosity, the parameters of the brazing process have been gradually optimized. The results show, that the combination of calcium phosphate particles and Ti–Co alloys effectively meet the requirements for a defined porous, biocompatible brazing coating.  相似文献   

17.
Aluminum foam sandwich (AFS) structure materials have drawn much attention due to their unique structural and functional properties. However, the use of AFS materials as an attractive candidate for some applications was limited. In this work, AFS was fabricated by the brazing method, using Al-Si-based alloy, aluminum foam and steel plates as filler, matrix and panels, respectively. The microstructures of the soldered interfacial region, elemental distributions and phase identification were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The diffusion behavior of Si, Al, Fe and Cr was investigated. The effect of brazing time on the shear strengths of soldered joints was also analyzed. The results showed that the microstructures of joints were changed on increasing the brazing time. When the brazing time was 5 min, the solder started melting, which led to low shear strength. When increasing the brazing time to 10 min, the shear strength reached the peak value of 6.26 MPa due to the formation of a layer plate structure in the joints. When further increasing the brazing time, a number of Al/Fe intermetallic compound were formed in the joints, leading to a decrease of the shear strength due to the formation of brittle phase.  相似文献   

18.
Three novel Cu–Ni–Al brazing filler alloys with Cu/Ni weight ratio of 4:1 and 2.5–10 wt% Al were developed and characterized, and the wetting of three Cu–Ni–Al alloys on WC–8 Co cemented carbide were investigated at 1190–1210?C by the sessile drop technique. Vacuum brazing of the WC–8 Co cemented carbide to SAE1045 steel using the three Cu–Ni–Al alloys as filler metal was further carried out based on the wetting test results. The interfacial interactions and joint mechanical behaviors involving microhardness, shear strength and fracture were analyzed and discussed. The experimental results show that all the three wetting systems present excellent wettability with final contact angles of less than 5?and fast spreading. An obvious degeneration layer with continuous thin strip forms in the cemented carbide adjacent to the Cu–Ni–Al/WC–8 Co interface. The variation of microhardness in the joint cross-section is closely related to the interactions(such as diffusion and solid solution) of WC–8 Co/Cu–Ni–Al/steel system. Compared with the other two brazed joints, the WC–8 Co/Cu–19 Ni–5 Al/steel brazed joint presents more reliable interlayer microstructure and mechanical property while brazing at the corresponding wetting temperatures for 5 min, and its average shear strength is over 200 MPa after further optimizing the brazing temperature and holding time. The joint shear fracture path passes along the degeneration layer, Cu–Ni–Al/WC–8 Co interface and brazing interlayer, showing a mixed ductile-brittle fracture.  相似文献   

19.
The effect of Cu with low contents of 10, 12, 15 wt.% on the microstructure and melting point of Al–Si–Cu–Ni alloy has been investigated. Results showed that low-melting-point properties of Al–Si–Cu–Ni alloys with low contents of Cu were attributed to disappearance of Al–Si binary eutectic reaction and introduction of Al–Si–Cu–Ni quaternary reaction. With raising Cu content from 10 to 15 wt.%, the amount of complex eutectic phases formed during low temperature reactions (Al–Cu, Al–Si–Cu and Al–Si–Cu–Ni alloy reactions) increased and the melting temperature of Al–Si–Cu–Ni filler metals declined. Brazing of 6061 aluminum alloy with Al–10Si–15Cu–4Ni (all in wt.%) filler metal of a melting temperature range from 519.3 to 540.2 °C has been carried out successfully at 570 °C. Sound joints can be obtained with Al–10Si–15Cu–4Ni filler metal when brazed at 570 °C for holding time of 60 min or more, and achieved high shear strength up to 144.4 MPa.  相似文献   

20.
采用快速甩带技术制备了(Al-10Si-20Cu-0.05Ce)-1Ti(质量分数/%)急冷箔状钎料,并对60%体积分数的SiCp/6063Al复合材料进行真空钎焊实验,然后对钎料及接头的显微组织与性能进行测定和分析.结果表明,急冷钎料的微观组织细小、成分均匀,厚80~90μm,主要包含Al、CuAl2、Si和Al2Ti等相.当升高钎焊温度(T/℃)或延长保温时间(t/min),SiCp/钎料界面的润湿性改善,6063Al基体/钎料间互扩散和溶解作用增强,接头连接质量逐渐提高.当T=590℃、t=30 min时,接头抗剪强度达到112.6MPa;当T=590℃、t=50 min时,少量小尺寸SiCp因液态钎料排挤而分散于钎缝,因加工硬化而使接头强度递增7.3%.然而,当T≥595℃、t≥60 min时,SiCp偏聚于钎缝,导致接头组织恶化,且剪切断裂以脆性断裂为主.综合考虑钎焊成本与接头强度使用要求,确定最佳钎焊工艺为590℃、30 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号