首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laserwelding of microwires made of nickel‐titanium shape memory alloys and austenitic steel The special properties of nickel‐titanium shape memory alloys are currently used in micro engineering and medical technology. In order to integrate nickel‐titanium components into existing parts and modules, they often need to be joined to other materials. For this reason, the present contribution deals with the laser welding of thin pseudoelastic nickel‐titanium wires (100 μm) with a neodymium‐doped Yttrium Aluminium Garnet laser. Based on extensive parameter studies, joints without defects were produced. This study deals with the microstructure in the fusion and heat‐affected zones, the performance of the joints in static tensile tests and their functional fatigue. It can be shown that nickel‐titanium/nickel‐titanium joints reach about 75 % of the ultimate tensile strength of pure nickel‐titanium wires. In case of welding nickel‐titanium to steel no interlayer was used. The dissimilar nickel‐titanium/steel joints provide a bonding strength in the fusion and heat‐affected zones higher than the plateau stress level. Nickel‐titanium/steel joints of thin wires, as a new aspect, enable the possibility to benefit from the pseudoelastic properties of the nickel‐titanium component.  相似文献   

2.
Rod Extrusion of Titanium‐Aluminum Composites The combination of different metals enables the processing of materials with local optimized properties. Thus, the production of metallic composites is associated with high standards in manufacturing technologie. Focus of the following investigations is the rod extrusion process of titanium‐aluminum‐composites. Besides the mechanical properties, the formation of the bonding zone and the mechanisms of adhesion in the bonding zone were investigated. The influence of specimens’ preparation and of different coatings used improve bonding were a matter of particular interest. Whereas coatings of copper or nickel inhibit the formation of a strong bonding due to the formation of oxide layers, sealed titanium cores can reach a mechanical strength of up to 100 MPa after rod extrusion. Compared to other joining technologies, an impairment of the base metal via formation of heat affected zones, pores or grain coarsening does not occur.  相似文献   

3.
Semi‐finished products and components made of NiTi‐shape‐memory alloys (NiTi‐SMA) are often subjected to heat treatment after their fabrication. During this heat treatment, oxide layers begin to form which contain a high amount of titanium. In this investigation special attention was drawn to the selective oxidation of Ti because a TiOX‐layer can represent a Ni‐barrier and may therefore be of special use for medical applications. A comparison of the following three samples was carried out: A sample oxidised at room temperature, another that was heat‐treated in ambient air (600 °C/1min) and a third sample that was subjected to a heat treatment (600 °C/1min) in an atmosphere that oxidises titanium but reduces NiO in order to achieve a selective oxidation of the titanium. The analysis of the oxide layers was carried out by means of x‐ray photoelectron spectroscopy (XPS). It was shown that the ratio of titanium to nickel in the oxide layer can be substantially increased when performing the annealing treatments in a partial reducing atmosphere. Furthermore, a thermo‐gravimetric investigation of the material was carried out at 600 °C in dry air in order to estimate the growth of the oxide layers.  相似文献   

4.
Hybrid rolling as exemplified by titanium‐aluminium laminates Triple layered titanium‐aluminium laminates composed of titanium alloys TiAl6V4 (ASTM grade 5) and Ti 99.8 ASTM grade 1) together with the aluminium alloys AlMgSi 0.5 (EN‐AW 6060) and AlCuMg 1 (EN‐AW 2017) are manufactured by hot rolling and the deformation behaviour is investigated subject to alternating deformation parameters. The focus is the investigation of the differences between stepwise and continuous increases in true strain. True strains of 20 … 60 % are tested at temperatures from 400 … 500 °C. The contact zone of the manufactured laminates is then metallographically examined and the interlayer bond strength is mechanically tested. Torsion tests are presented for qualitatively determining the bond strength of the laminate. Bond forming already initiates at true strains of 35 % and temperatures of 350 °C within the rolling gap.  相似文献   

5.
Immobilization of adhesive peptides interacting with cellular integrin receptors onto metallic implant surfaces represents a promising approach to improve osseointegration of implants into the surrounding tissue. In the present study, a functional dextran‐based coating system consisting of an amino titanate adhesion promoter with dendritic structure and a carboxymethyl dextran was established to bind an RGD‐containing adhesive peptide via a selective coupling methodology onto titanium surfaces. The three‐step reaction procedure was characterized by X‐ray photoelectron spectroscopy. In cell adhesion experiments it could be demonstrated that dextran coatings containing immobilized RGD promote attachment and spreading of fibroblast and pre‐osteoblastic cells compared to native as well as CMD‐coated titanium surfaces without RGD. The direct attachment of the RGD sequence to the metal surface via the amino titanate adhesion promoter did not increase pre‐osteoblastic cell spreading, whereas coupling of RGD to the polymeric carboxy­methyl dextran layer slightly enhanced spreading of the cells.  相似文献   

6.
The binary titanium‐ 5wt% aluminum alloy (VT‐5) is a commonly used Russian grade of titanium. It has much higher strength compared to the well known commercially pure titanium grades; at the same time it exhibits reasonable toughness values. Hot rolled bars of this grade were to be manufactured and supplied conforming to OST I 90173‐75 specification. Material was hot rolled to final size; as the hydrogen level was higher than the specified maximum, the bars were subjected to vacuum annealing. The vacuum annealed material did not meet the specification with reference to Charpy impact toughness. Repeat vacuum heat treatment was therefore carried out at a higher temperature; material was then found to be meeting all specification requirements. The paper brings out the details of failure, analysis carried out to identify the factors responsible for the failure and the rejuvenation steps taken to render the product acceptable.  相似文献   

7.
Mechanical robustness is a central concern for moving artificial superhydrophobic surfaces to application practices. It is believed that bulk hydrophilic materials cannot be use to construct micro/nanoarchitectures for superhydrophobicity since abrasion‐induced exposure of hydrophilic surfaces leads to remarkable degradation of water repellency. To address this challenge, the robust mechanical durability of a superhydrophobic surface with metal (hydrophilic) textures, through scalable construction of a flexible coral‐reef‐like hierarchical architecture on various substrates including metals, glasses, and ceramics, is demonstrated. Discontinuous coral‐reef‐like Cu architecture is built by solid‐state spraying commercial electrolytic Cu particles (15–65 µm) at supersonic particle velocities. Subsequent flame oxidation is applied to introduce a porous hard surface oxide layer. Owing to the unique combination of the flexible coral‐reef‐like architecture and self‐similar manner of the fluorinated hard oxide surface layer, the coating surface retains its water repellency with an extremely low roll‐off angle (<2°) after cyclic sand‐paper abrasion, mechanical bending, sand‐grit erosion, knife‐scratching, and heavy loading of simulated acid rain droplets. Strong adhesion to glass, ceramics, and metals up to 34 MPa can be achieved without using adhesive. The results show that the present superhydrophobic coating can have wide outdoor applications for self‐cleaning and corrosion protection of metal parts.  相似文献   

8.
To resist high thermal loads in turbines effectively, turbine blades are protected by thermal barrier coatings in combination with additional air cooling. State‐of‐the‐art yttria stabilised zirconia top coats do not operate at temperatures higher than 1,200 °C. Promising candidates for alternative top coats are pyrochlores, lanthanum zirconate and gadolinium zirconate. But lifetime of pyrochlores is short because of spallation. However, combinations of yttria stabilised zirconia and lanthanum zirconate or gadolinium zirconate as multilayer systems are promising top layers operating at higher temperatures than yttria stabilised zirconia. Such thermal barrier coatings top coats as double‐ceramic‐layer systems consisting of 7 wt.% yttria stabilised zirconia and lanthanum zirconate or gadolinium zirconate were deposited by Electron Beam‐Physical Vapour Deposition. The focus of the work was set on the influence of the coating design and the microstructure variation generated at different rotating speeds on the adhesion and thermally grown oxide behaviour after isothermal oxidation at 1,300 °C. Phase formation of the thermal barrier coatings top coats was obtained using X‐ray diffraction. After isothermal oxidation tests for 50 h at 1,300 °C, both, microstructure change and the formation of the thermally grown oxide were investigated. While the pyrochlore single‐ceramic‐layer are completely spalled off, microstructure of the double‐ceramic‐layer reveals only crack initiation. The thermally grown oxide thickness was determined by means of scanning electron microscopy. A high aluminum and oxygen content in the thermally grown oxide is found using X‐ray spectroscopy. Existence of α‐phase in Al2O3 was proved by X‐ray diffraction. After isothermal testing, no phase transformation can be detected regarding the double‐ceramic‐layer coatings.  相似文献   

9.
Titanium alloys thanks to their low density and high mechanical properties are a group of materials that are being used willingly nowadays. A promising method of titanium heat treatment is laser alloying. Process parameters like laser beam power, its traverse speed, amount of alloying elements and shield gas, have influence on the resulting material. Different chemical composition and morphology can be achieved resulting in a change of properties on the surface of the material. The paper presents the investigation of titanium GRADE 1 processed with iron‐nickel powder using laser alloying. The treatment was performed using a high power diode laser. Different laser beam power values were used. Treatment resulted in obtaining good‐adhere, porous‐free, uniform composite material with no cracks. Formation of new phases and solid solution was the reason why it was possible to achieve an increase in microhardness on the surface. Light microscopy, scanning electron microscopy with energy dispersive X‐ray spectroscopy examination, microhardness results and X‐ray diffraction are presented within the paper.  相似文献   

10.
Among the materials available for implant production,titanium is the most used while polyetherether-ketone (PEEK) is emerging thanks to its stability and to the mechanical properties similar to the ones of the bone tissue.Material surface properties like roughness and wettability play a paramount role in cell adhesion,cell proliferation,osteointegration and implant stability.Moreover,the bacterial adhesion to the biomaterial and the biofilm formation depend on surface smoothness and hydrophobicity.In this work,two different treatments,sandblasting and air plasma,were used to increase respectively roughness and wettability of two materials:titanium and PEEK.Their effects were analyzed with profilometry and contact angle measurements.The biological properties of the material surfaces were also investigated in terms of cell adhesion and proliferation of NIH-3T3 cells,MG63 cells and human Dental Pulp Stem Cells.Moreover,the ability of Staphylococcus aureus to adhere and form a viable biofilm on the samples was evaluated.The biological properties of both treatments and both materials were compared with samples of Synthegra(R) titanium,which underwent laser ablation to obtain a porous micropatterning,character-ized by a smooth surface to discourage bacterial adhesion.All cell types used were able to adhere and proliferate on samples of the tested materials.Cell adhesion was higher on sandblasted PEEK samples for both MG63 and NIH-3T3 cell lines,on the contrary,the highest proliferation rate was observed on sandblasted titanium and was only slightly dependent on wettability;hDPSCs were able to proliferate similarly on sandblasted samples of both tested materials.The highest osteoblast differentiation was ob-served on laser micropatterned titanium samples,but similar effects,even if limited,were also observed on both sandblasted materials and air plasma treated titanium.The lowest bacterial adhesion and biofilm formation was observed on micropatterned titanium samples whereas,the highest biofilm formation was detected on sandblasted PEEK samples,and in particular on samples not treated with air-plasma,which displayed the highest hydrophobicity.The results of this work showed that all the tested materials were able to sustain osteoblast adhesion and promote cell proliferation;moreover,this work highlights the fea-sible PEEK treatments which allow to obtain surface properties similar to those of titanium.The results here reported,clearly show that cell behavior depends on a complex combination of surface properties like wettability and roughness and material nature,and while a rough surface is optimal for cell adhesion,a smooth and less hydrophilic surface is the best choice to limit bacterial adhesion and biofilm formation.  相似文献   

11.
Plates of superelastic nickel‐titanium shape memory alloy (NiTi) were coated with calcium phosphate (hydroxyapatite) by high‐temperature plasma‐spraying. The porous layer of about 100 μm thickness showed a good adhesion to the metallic substrate that withstood bending of the plate but detached upon cutting the plate. The biocompatibility was tested by cultivation of blood cells (whole blood and isolated granulocytes [a subpopulation of blood leukocytes]). As substrates, pure NiTi, plasma‐spray‐coated NiTi and calcium phosphate‐coated NiTi prepared by a dip‐coating process were used. The adhesion of whole blood cells to all materials was not significantly different. In contrast, isolated granulocytes showed an increased adhesion to both calcium phosphate‐coated NiTi samples. However, compared to non‐coated NiTi or dip‐coated NiTi, the number of dead granulocytes adherent to plasma‐sprayed surfaces was significantly increased for isolated granulocytes (p<0.01).  相似文献   

12.
For several years the treatment of metals like cp titanium and 316L stainless steel with concentrated chromosulfuric acid at high temperatures (230‐240 °C) has formed the basis for preparing ultra‐hydrophilic priming coats on these metals (Jennissen et al. Materialwiss. Werkstofftech. 30, 838‐845, 1999). Metals treated in this way have been called surface‐enhanced, displaying a characteristic ultrastructure, and can be easily modified to carry a biocoat of recombinant human bone morphogenetic protein 2 (rhBMP‐2). The major oxide on surface enhanced titanium is TiO2. Thus this TiO2‐layer could be responsible for the ultra‐hydrophilic properties of the priming coat. Irradiation of TiO2 layers by ultraviolet light (Wang et al., Nature 388, 431‐432, 1997) has been shown to endow these layers with ultra‐hydrophilic properties (i.e. contact angles of ~ 0°). However the ultra‐hydrophilic TiO2‐layers produced by irradiation are unstable and revert to the original high contact angles of ~ 70° within several days. The question of whether the ultra‐hydrophilic surfaces prepared by the chromosulfuric acid method show long‐term stability was therefore important to answer. In addition the question if rhBMP‐2 immobilized on such a surface will retain its biological activity was of great interest. In this paper it will be shown that ultrahydrophilic titanium mini‐plates retain their ultra‐hydrophilicity with contact angles of 0‐8° unchanged for at least 50 days and support the immobilization of rhBMP‐2 in a biologically active form.  相似文献   

13.
Long‐distance wireless actuation indicates precise remote control over materials, sensors, and devices that are widely utilized in biomedical, defence, disaster relief, deep ocean, and outer space applications to replace human work. Unlike radio frequency (RF) control, which has low tolerance toward electromagnetic interference (EMI), light control represents a promising method to overcome EMI. Nonetheless, long‐distance light‐controlled wireless actuation able to compete with RF control has not been achieved until now due to the lack of highly light‐sensitive actuator designs. Here, it is demonstrate that amyloid‐like protein aggregates can organize photomodule single‐layer reduced graphene oxide (rGO) into a well‐defined multilayer stack to display long‐distance photoactuation. The amyloid‐like proteinaceous component docks the rGO layers together to form a hybrid film, which can reliably adhere onto various material surfaces with robust interfacial adhesion. The sensitive photothermal effect and a fast bending in 1 s to switch a circuit are achieved after forming the film on a plastic substrate and irradiating the bilayer film with a blue laser from 100 m away. A photoactuation distance of 50 km can be further extrapolated based on a commercial high‐power laser. This study reveals the great potential of amyloid‐like aggregates in remote light control of robots and devices.  相似文献   

14.
15.
Bone morphogenetic proteins (BMPs) play a decisive role in bone development and osteogenesis. In the past they have been the subject of widespread research and clinical trials as stimulants of bone growth. Although recently recombinant human BMP‐2 (rhBMP‐2) has been chemically immobilized on implant surfaces leading to enhanced bone growth and accelerated integration in vivo, the non‐covalent immobilization of proteins on metal surfaces is still poorly understood, since the oxide layers on metals like titanium, stainless steel or cobalt chromium alloys are poor adsorbents of proteins. Protein binding surfaces could either be generated by linking ionic groups (ion‐exchange surface) or by coupling hydrophobic residues (hydrophobic interacting surface, HIS) to the surface. In this paper the preparation of protein adsorbing surfaces on titanium and cobalt chromium molybdenum alloy for the adsorption of rhBMP‐2 and ubiquitin will be described. rhBMP‐2 and ubiquitin are bound extremely tight to surfaces containing propyl or hexyl groups of a certain surface concentration and are slowly released over a range of at least 24–100 days making such surfaces applicable as long‐term drug delivery devices for enhancing bone growth or implant integration.  相似文献   

16.
The mechanisms that control the lifetime of thermal barrier coating (TBC) systems have been traced by two particular overlay bondcoats serving as model systems: superalloy pins (IN100, CMSX‐4) with two alternative NiCoCrAlRE (RE: Hf, Y) bond coat compositions (i) NiCoCrAlY without and (ii) with co‐dopants of silicon and hafnium. On top an electron‐beam physical‐vapor deposited (EB‐PVD) yttria partially stabilized zirconia (YPSZ) TBC commonly mixed with 2 wt.% hafnia, or, rarely with 10 wt.%, was applied. The test pins were thermo‐cycled at 1100 and 1150 °C until failure. Identical lifetimes in cyclic tests on YPSZ TBCs with 2 (relatively high sintering rate) and 10 wt.% hafnia (relatively low sintering rate) preclude an effect of diffusion mechanisms of the YPSZ TBC on lifetime. The fit of lifetimes and test temperatures to Arrhenius‐type relationships gives activation energies for failure. These energies agree with the activation energies for anion and cation diffusion in alumina for the respective bondcoat variant: (i) for the NiCoCrAlY/TBC system for O2‐ diffusion in alumina, (ii) for the NiCoCrAlYSiHf/TBC system for Al3+ diffusion in alumina. SEM and EDS investigations of the thermally grown oxides (TGOs) confirm the mechanisms responsible for TBC failure as indicated by activation energies. Two categories of failure can be distinguished: (i) NiCoCrAlY coatings fail by an “adhesive mode of failure” along smooth bond coat/TGO interfaces driven by a critical TGO thickness. (ii) NiCoCrAlYSiHf coatings fail later and more reluctantly by a “cohesive” crack mode via de‐cohesion at the TGO/TBC interface. In the latter case a quasi‐integrity of the crack‐affected TGO is lengthily maintained up to failure by a crack‐pinning mechanism which runs via Al3+ supply from the bondcoat.  相似文献   

17.
Near‐net‐shape manufacturing of highly porous titanium parts for biomedical applications The production of highly porous titanium parts is attractive for biomedical applications. Preferrentially, these parts are produced by powdermetallurgical means using suitable spacer materials. Porosities up to 75 % and well defined pore sizes in the range of 0.1 to 2.0 mm are achieved adjusting the amount and the particle size of the spacer material. Up to now, near‐net‐shape manufacturing of highly porous parts was hindered by the plastic deformation of the sintered network during machining leading to a partial or complete closing of the open porosity. A new manufacturing route is presented, where the shaping is already done in the unsintered state starting from pressed compacts. The stability of the compacts was found to be sufficient to machine the compacts without additional binders. The manufacturing route was successfully applied to the prototype of an acetabular cup. Additionally, some investigations are presented characterizing the highly porous titanium.  相似文献   

18.
Due to clearly distinguishable damage symptoms, it is differentiated between the surface and sub‐surface failure mode of rolling bearings. Material states red out by X‐ray diffraction (XRD) residual stress measurements point to a variety of loading conditions especially at raceway surfaces that are associated with several competing failure mechanisms. The corresponding lifetime reduction can range from the lower fatigue strength region to material ratcheting in extreme cases. Relevant position of the microstructural changes and nature of the failure mechanisms are characterized. The time alteration of the XRD material parameters measured at or near the surface and at the depth of the maximum equivalent stress correlates, in a different manner, with the statistical parameter of the 10 % bearing life. Both failure modes are illustrated by concrete examples. Contaminated lubricant and boundary lubrication, which represent practically important surface‐induced failures, are discussed in more detail. Gray staining, i.e. shallow pitting, often occurs without distinct indication of global material aging by means of XRD characteristics. Here, scanning electron microscopy observations and electron microprobe analyses point to corrosion fatigue as acting surface failure mechanism. The interaction between material and lubricant under complex loading regimes particularly of mixed friction and corrosion opens further failure research areas in the field of tribology.  相似文献   

19.
Stretchable light‐emitting diodes (LEDs) and electroluminescent capacitors have been reported to potentially bring new opportunities to wearable electronics; however, these devices lack in efficiency and/or stretchability. Here, a stretchable organometal‐halide‐perovskite quantum‐dot LED with both high efficiency and mechanical compliancy is demonstrated. The hybrid device employs an ultrathin (<3 µm) LED structure conformed on a surface‐wrinkled elastomer substrate. Its luminescent efficiency is up to 9.2 cd A?1, which is 70% higher than a control diode fabricated on the rigid indium tin oxide/glass substrate. Mechanical deformations up to 50% tensile strain do not induce significant loss of the electroluminescent property. The device can survive 1000 stretch–release cycles of 20% tensile strain with small fluctuations in electroluminescent performance.  相似文献   

20.
Surface Modification of Titanium for Improvement of the Interfacial Biocompatibility We report the CVD‐polymerisation of amino‐functionalized [2,2]‐paracyclophane for polymer coating and functionalization of titanium surfaces. Additionally, the functionalization was carried out by silanization with 3‐aminopropyl‐triethoxysilane. The generated amino‐groups were used for covalent immobilization of bioactive substances to stimulate the adhesion and growth of osteoblasts. As bioactive substances the pentapeptide GRGDS and the growth factor BMP‐2 were chosen. The covalent bonding was achieved by activation with hexamethylene diisocyanate. Each modification step was characterized by X‐ray‐photoelectron‐spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurements. The covalent bonding of the bioactive substances was proven by radiolabelling and surface‐MALDI‐ToF‐MS. In vitro‐biocompatibility tests with primary, human osteoblasts demonstrated the improved cell adhesion and spreading on the bioactive modified titanium surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号