共查询到20条相似文献,搜索用时 62 毫秒
1.
基于最小二乘支持向量机的T-S模型在线辨识 总被引:2,自引:0,他引:2
提出一种基于时间窗最小二乘支持向量机的T-S模型在线辨识算法,包括结构辨识和参数辨识.该算法以时间窗内数据的势能作为结构辨识依据,同时采用最小二乘支持向量机辨识系统参数:具有辨识速度快、精度高的特点.仿真结果证明了算法的有效性. 相似文献
2.
T-S模型把一个非线性系统当做多个线性子系统与其权重乘积之和,能够逼近任意非线性系统。提出基于遗传算法和支持向量机的T-S模型全局优化辨识方法,利用遗传算法同时辨识T-S模型的结构和参数,以结构风险最小化作为辨识的评价指标,综合考虑模型复杂度和辨识误差,辨识精度高,泛化能力强,仿真结果证明了算法的有效性。 相似文献
3.
4.
支持向量机是一种采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的新型机器学习方法,具有出色的学习分类能力和推广能力,广泛的应用于故障诊断和函数拟合中;以某型直升机机载电气盒的故障诊断为实验平台,提出了一种自适应遗传算法和最小二乘支持向量机相结合的故障诊断方法,利用自适应遗传算法强大的全局搜索能力对最小二乘支持向量机的参数进行寻优;仿真结果表明,基于自适应遗传算法优化的最小二乘支持向量机取得了较好的故障诊断精度和效率. 相似文献
5.
6.
采用遗传算法优化最小二乘支持向量机参数的方法 总被引:11,自引:1,他引:11
支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题.由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据.针对支持向量机的参数选择问题,提出了一种采用遗传算法优化最小二乘支持向量机参数的方法.结合LS-SVMlab工具箱,在MATLAB实验平台的仿真实验表明,该方法提高了支持向量机的参数选择效率,得到的参数对测试样本的分类结果是最优的,从而避免了人为设定参数的不足,同时缩短了优化时间. 相似文献
7.
8.
9.
10.
基于智能遗传算法与复合最小二乘支持向量机的长江水质预测与评价* 总被引:1,自引:0,他引:1
由于水质的非线性、不确定性等特性,水质预测与评价是很复杂的一个问题;最小二乘支持向量机已经成功地应用于解决非线性问题和时间级数问题。提出一种新的IGALSSM模型,即基于一种新型遗传算法——智能遗传算法参数优选的最小二乘支持向量机模型,并且将提出的模型应用于长江水质的分类识别和预测。实验结果表明,所提出的模型比神经网络有更准确的识别率和更高的预测精度,具有较强的实用价值。 相似文献
11.
基于支持向量机回归的T-S模糊模型自组织算法及应用 总被引:2,自引:0,他引:2
结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法. 该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识后件参数. 仿真结果表明,相比现有的自组织算法,本文提出的T-S模糊模型自组织算法在规则数较少的情况下,仍然具有较高的辨识精度和较好的泛化能力. 最后,利用提出的T-S模糊模型自组织算法较好地建立了直拉硅单晶炉加热器和空气预热器的温度模型. 相似文献
12.
提出了一种基于实数编码遗传算法的改进支持向量机.针对二进制遗传算法求解分类问题的3点不足之处,提出了改进算法.该算法在问题的约束中引进核函数,将问题映射到高维空间,成为线性问题后求解,从而使算法不仅适合解线性问题,也适合解非线性问题;引进Reduced SVM思想,仅用数据集的1%~10%的样本信息就能求出分类问题的分划超平面,从而大大降低了问题的复杂性;最后采用实数编码的遗传算法求解,节省了两次编码-解码转换所占据的运行时间.给出了算法的迭代步骤,数值实验表明该改进的算法是有效的,理论证明该算法确实是收敛的. 相似文献
13.
GAO Hui 《数字社区&智能家居》2008,(7)
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别。由于支持向量机的参数对识别性能有较大影响,因此这篇文章文采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用ORL人脸库进行仿真实验,得到了较好的识别效率。 相似文献
14.
15.
16.
17.
18.
基于遗传算法优化支持向量机的网络流量预测 总被引:5,自引:0,他引:5
介绍了支持向量机用于时间序列预测的理论基础和遗传算法优化支持向量机参数的方法,首次把遗传算法优化参数支持向量机应用于两组实际网络流量的预测,并与BP神经网络和RBF神经网络方法进行了比较.结果表明:支持向量机相比较BP神经网络和RBF神经网络对网络流量的预测结果精度更高、性能更好.利用支持向量机预测网络流量是一种可行、有效的方法. 相似文献
19.
支持向量机是一种基于小样本学习的有效工具,作为分类器被认为具有很高的推广性能,无需先验知识。但是参数的选取与支持向量机的识别性能是相关的,核函数参数σ2和惩罚因子C对支持向量机识别性能会产生很大的影响。针对支持向量机在人脸识别问题中的应用,提出了一种基于遗传算法(GA)的参数选择优化方法。利用笔者曾提出的基于小波分解和积分投影的人脸特征提取算法对人脸图像进行特征参数提取,然后利用优化的支持向量机进行识别。实验结果表明,该方法是有效的。 相似文献
20.
一种基于支持向量机和遗传算法的自适应图像水印方法 总被引:2,自引:0,他引:2
提出一种基于支持向量机(SVM)和遗传算法(GA)的离散余弦变换(DCT)域盲数字图像水印方法.该方法能自适应于图像的局部特征.依据图像块的局部特性,利用SVM对图像块分类,自适应地确定水印嵌入强度,GA用来优化水印嵌入位置.实验结果表明该方法有较好的不可见性和较强对抗攻击的鲁棒性. 相似文献