首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于最小二乘支持向量机的T-S模型在线辨识   总被引:2,自引:0,他引:2  
提出一种基于时间窗最小二乘支持向量机的T-S模型在线辨识算法,包括结构辨识和参数辨识.该算法以时间窗内数据的势能作为结构辨识依据,同时采用最小二乘支持向量机辨识系统参数:具有辨识速度快、精度高的特点.仿真结果证明了算法的有效性.  相似文献   

2.
T-S模型把一个非线性系统当做多个线性子系统与其权重乘积之和,能够逼近任意非线性系统。提出基于遗传算法和支持向量机的T-S模型全局优化辨识方法,利用遗传算法同时辨识T-S模型的结构和参数,以结构风险最小化作为辨识的评价指标,综合考虑模型复杂度和辨识误差,辨识精度高,泛化能力强,仿真结果证明了算法的有效性。  相似文献   

3.
热电偶的电动势和温度之间的函数关系是一种非线性关系。对热电偶进行精确的非线性辨识是提高温度测试精度的关键。采用最小二乘支持向量机方法解决热电偶的非线性辨识问题,可以实现热电偶电动势和温度之间的高精度辨识。该方法采用LS-SVM构建逆模型,并通过该模型映射热电偶的非线性特性。通过K型热电偶的非线性辨识实验结果表明:所提出的LS-SVM模型能很好地拟合热电偶的非线性特征,辨识精度高,误差在0.3℃以内。  相似文献   

4.
支持向量机是一种采用结构风险最小化原则代替传统统计学中的基于大样本的经验风险最小化原则的新型机器学习方法,具有出色的学习分类能力和推广能力,广泛的应用于故障诊断和函数拟合中;以某型直升机机载电气盒的故障诊断为实验平台,提出了一种自适应遗传算法和最小二乘支持向量机相结合的故障诊断方法,利用自适应遗传算法强大的全局搜索能力对最小二乘支持向量机的参数进行寻优;仿真结果表明,基于自适应遗传算法优化的最小二乘支持向量机取得了较好的故障诊断精度和效率.  相似文献   

5.
研究非线性系统TSK模糊模型的辨识与控制,利用TSK模型,可以将线性控制理论应用于非线性系统控制。基于支持向量机和递推最小二乘法,辨识出TSK模糊模型,并且通过遗传算法优化隶属度函数参数,最小化辨识误差。针对TSK模型进行控制,控制器包括两个部分:权重最大子系统反馈控制及其监督控制,监督控制保证了系统的稳定性。辨识和控制仿真结果证明了算法的有效性。  相似文献   

6.
采用遗传算法优化最小二乘支持向量机参数的方法   总被引:11,自引:1,他引:11  
支持向量机是建立在统计学习理论上的一种学习算法,较好地解决了小样本学习问题.由不同的参数和核函数构造的支持向量机在性能上存在很大差异,而在参数和核函数的选择上目前还没有明确的理论依据.针对支持向量机的参数选择问题,提出了一种采用遗传算法优化最小二乘支持向量机参数的方法.结合LS-SVMlab工具箱,在MATLAB实验平台的仿真实验表明,该方法提高了支持向量机的参数选择效率,得到的参数对测试样本的分类结果是最优的,从而避免了人为设定参数的不足,同时缩短了优化时间.  相似文献   

7.
王跃钢  邓伟强  单斌 《传感技术学报》2011,24(10):1445-1449
提出了一种改进的最小二乘支持向量机并将之应用于时变自回归滑动平均模型的辨识.与传统的最小二乘支持向量机相比,通过同时引入结构风险矩阵Q和经验风险权重因子vi,既降低了数据存储空间,又兼具较好的灵活性和适应性,并成功地应用于TVARMA模型的参数辨识过程.实验结果表明方法的有效性.  相似文献   

8.
为提高导引头故障诊断准确率,提出了一种采用改进遗传算法优化的最小二乘支持向量机(LSSVM)构造导引头多故障分类模型的方法。该方法基于一对一策略及改进的投票法建立两层LSSVM多故障分类器,并利用一种自适应变步长搜索策略改进的遗传算法对LSSVM的核参数和正则化参数进行自动优选。通过对某型导引头实测数据的仿真并和标准SVM及BP神经网络诊断方法相比较,结果表明该方法具有更高诊断准确率和计算效率。  相似文献   

9.
稀疏最小二乘支持向量机及其应用研究   总被引:2,自引:0,他引:2  
提出一种构造稀疏化最小二乘支持向量机的方法.该方法首先通过斯密特正交化法对核矩阵进 行简约,得到核矩阵的基向量组;再利用核偏最小二乘方法对最小二乘支持向量机进行回归计算,从而使最 小二乘向量机具有一定稀疏性.基于稀疏最小二乘向量机建立了非线性动态预测模型,对铜转炉造渣期吹炼 时间进行滚动预测.仿真结果表明,基于核偏最小二乘辨识的稀疏最小二乘支持向量机具有计算效率高、预 测精度好的特点.  相似文献   

10.
由于水质的非线性、不确定性等特性,水质预测与评价是很复杂的一个问题;最小二乘支持向量机已经成功地应用于解决非线性问题和时间级数问题。提出一种新的IGALSSM模型,即基于一种新型遗传算法——智能遗传算法参数优选的最小二乘支持向量机模型,并且将提出的模型应用于长江水质的分类识别和预测。实验结果表明,所提出的模型比神经网络有更准确的识别率和更高的预测精度,具有较强的实用价值。  相似文献   

11.
基于支持向量机回归的T-S模糊模型自组织算法及应用   总被引:2,自引:0,他引:2  
梁炎明  苏芳  李琦  刘丁 《自动化学报》2013,39(12):2143-2149
结合模糊聚类算法和支持向量机回归算法提出了一种新的T-S模糊模型自组织算法. 该算法首先利用一种改进模糊聚类算法提取模糊规则和辨识前件参数,然后将T-S模糊模型后件变换为标准线性支持向量机回归模型,并利用支持向量机回归算法辨识后件参数. 仿真结果表明,相比现有的自组织算法,本文提出的T-S模糊模型自组织算法在规则数较少的情况下,仍然具有较高的辨识精度和较好的泛化能力. 最后,利用提出的T-S模糊模型自组织算法较好地建立了直拉硅单晶炉加热器和空气预热器的温度模型.  相似文献   

12.
提出了一种基于实数编码遗传算法的改进支持向量机.针对二进制遗传算法求解分类问题的3点不足之处,提出了改进算法.该算法在问题的约束中引进核函数,将问题映射到高维空间,成为线性问题后求解,从而使算法不仅适合解线性问题,也适合解非线性问题;引进Reduced SVM思想,仅用数据集的1%~10%的样本信息就能求出分类问题的分划超平面,从而大大降低了问题的复杂性;最后采用实数编码的遗传算法求解,节省了两次编码-解码转换所占据的运行时间.给出了算法的迭代步骤,数值实验表明该改进的算法是有效的,理论证明该算法确实是收敛的.  相似文献   

13.
首先应用K-L变换对人脸图像进行特征提取,然后利用支持向量机对其进行识别。由于支持向量机的参数对识别性能有较大影响,因此这篇文章文采用量子遗传算法对支持向量机参数进行选取。算法解决了支持向量机参数选取的难题。利用ORL人脸库进行仿真实验,得到了较好的识别效率。  相似文献   

14.
针对支持向量机算法在回归预测时由于参数选取不当导致过学习或欠学习的情况,提出一种基于改进遗传算法的支持向量机参数优化模型。该模型将遗传算法与支持向量机结合,利用遗传算法进化搜索的原理对支持向量机具有重要意义的惩罚参数、核参数和损失函数同时优化。实验选取3组标准数据集作为测试数据集,并将改进算法同时与遗传算法、网格寻址算法、粒子群算法进行仿真测试结果对比。实验结果表明改进的算法较大地提高了支持向量机算法整体的寻优能力。  相似文献   

15.
文本特征维数通常高达几万且特征之间存在大量冗余和不相关信息,从而导致传统的分类方法效率低、分类准确率低.为了提高文本分类的快速性和准确性,提出了一种遗传算法(GA)和支持向量机(SVM)相结合的文本分类方法.把文本特征组合看作遗传算法中一个染色体,并进行二进制编码,将支持向量机分类准确率作为遗传算法的适应度函数,对每一...  相似文献   

16.
基于SVM和GA的图像质量评价方法   总被引:1,自引:1,他引:1       下载免费PDF全文
王磊  丁文锐  向锦武  崔乐 《计算机工程》2011,37(10):195-197
针对主观评价关联方法易陷入局部最优以及处理非线性、高维、小样本问题时效果不佳等问题,以均方误差、峰值信噪比、奇异值分解这3个图像质量客观评价指标和LIVE数据库评分作为学习样本,通过支持向量机学习得到主客观关联函数,利用遗传算法进行最优参数选取,由此得到具有主客观一致性的评价模型。测试结果表明,相比传统方法,该方法对图像质量的评价更准确。  相似文献   

17.
基于支持向量机的系统辨识   总被引:2,自引:1,他引:2  
支持向量机是在统计学习理论基础上发展的一种新的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点。该文利用支持向量机,选取不同的核函数,分别对线性自回归滑动平均模型、双线性模型、非线性模型进行模型辨识。仿真结果显示该方法具有良好的辨识性能。  相似文献   

18.
基于遗传算法优化支持向量机的网络流量预测   总被引:5,自引:0,他引:5  
张颖璐 《计算机科学》2008,35(5):177-179
介绍了支持向量机用于时间序列预测的理论基础和遗传算法优化支持向量机参数的方法,首次把遗传算法优化参数支持向量机应用于两组实际网络流量的预测,并与BP神经网络和RBF神经网络方法进行了比较.结果表明:支持向量机相比较BP神经网络和RBF神经网络对网络流量的预测结果精度更高、性能更好.利用支持向量机预测网络流量是一种可行、有效的方法.  相似文献   

19.
支持向量机是一种基于小样本学习的有效工具,作为分类器被认为具有很高的推广性能,无需先验知识。但是参数的选取与支持向量机的识别性能是相关的,核函数参数σ2和惩罚因子C对支持向量机识别性能会产生很大的影响。针对支持向量机在人脸识别问题中的应用,提出了一种基于遗传算法(GA)的参数选择优化方法。利用笔者曾提出的基于小波分解和积分投影的人脸特征提取算法对人脸图像进行特征参数提取,然后利用优化的支持向量机进行识别。实验结果表明,该方法是有效的。  相似文献   

20.
一种基于支持向量机和遗传算法的自适应图像水印方法   总被引:2,自引:0,他引:2  
提出一种基于支持向量机(SVM)和遗传算法(GA)的离散余弦变换(DCT)域盲数字图像水印方法.该方法能自适应于图像的局部特征.依据图像块的局部特性,利用SVM对图像块分类,自适应地确定水印嵌入强度,GA用来优化水印嵌入位置.实验结果表明该方法有较好的不可见性和较强对抗攻击的鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号