首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photic information that entrains circadian rhythms is transmitted to the suprachiasmatic nucleus (SCN) from the retina and from the retinorecipient intergeniculate leaflet (IGL). Expression of light-induced Fos protein in SCN neurons is correlated with the effectiveness of such light to induce phase shifts, and is prevented by pretreatment with glutamate receptor antagonists that prevent phase shifts as well. In the present study we demonstrate that treatments with N-methyl-d-aspartate (NMDA) and non-NMDA receptor antagonists prior to light pulses during the subjective night have no effect on light-induced Fos immunoreactivity (Fos-IR) in IGL neurons despite attenuating Fos-IR in the SCN. Transmission of photic information along retinogeniculate and retinohypothalamic pathways appears to be mediated by different mechanisms.  相似文献   

2.
To assess the possible involvement of NMDA receptors in mediating the expression of striatal c-fos by cocaine injection, we investigated the effects of the noncompetitive NMDA receptor antagonists, ketamine and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801), as well as the competitive NMDA receptor antagonist, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), in the perikarya of cocaine-treated rat brains. As previously shown by our group, administration of 20 mg/kg cocaine (IP) resulted in the immunocytochemical expression of the protooncogene in numerous cells of the caudate putamen (dorsal/sensorimotor striatum). A ketamine mixture anesthetic (2 mg/kg), however, administered 30 min prior to cocaine exposure completely blocked such genomic expression. Pretreatment with MK-801 (1 mg/kg) or CPP (5 mg/kg) also interfered, albeit to a lesser extent, with the expression of c-fos by cocaine in awake animals. These results indicate that cocaine induction of cellular c-fos in the caudate putamen is mediated at least in part by NMDA-sensitive receptors.  相似文献   

3.
Two experiments examined the effect of the noncompetitive NMDA receptor antagonist, dizocilpine maleate (MK-801), on spatial working memory during development. Rats were trained on spatial delayed alternation (SDA) in a T-maze after ip administration of 0.06 mg/kg MK-801, 0.1 mg/kg MK-801, or saline on postnatal days (P) P23 and P33 (Experiment 1), or following bilateral intrahippocampal administration of 2.5 or 5.0 υg per side MK-801 or saline on P26 (Experiment 2). In Experiment 1, MK-801 dose-dependently impaired SDA learning at both ages. Because the same doses of systemic MK-801 have no effect on T-maze position discrimination learning, impairment of SDA by MK-801 likely reflects disruption of spatial working memory. Both doses of MK-801 abolished acquisition of SDA performance in Experiment 2. Disruption of hippocampal plasticity may account for the effects produced by systemic MK-801 administration. These results confirm and extend earlier lesion studies by implicating plasticity of hippocampal neurons in the ontogeny of spatial delayed alternation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
BACKGROUND AND PURPOSE: Glutamate receptor activation can stimulate nitric oxide (NO) production and possibly play a role in long-term potentiation and excitotoxic-mediated injury. We studied the differential effect of agonist-induced activation of ion channel-linked N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subtypes on NO production in vivo in rat hippocampus. We also studied whether dantrolene, a ryanodine calcium channel inhibitor previously shown to attenuate metabotropic glutamate receptor stimulation of NO production, also attenuated ionotropic glutamate receptor-mediated stimulation of NO production. METHODS: Microdialysis probes were placed bilaterally into the CA3 region of the hippocampus of pentobarbital-anesthetized adult Sprague-Dawley rats and were perfused for 5 hours with artificial cerebrospinal fluid (CSF) containing 3 mumol/L [14C]L-arginine. Recovery of [14C]L-citrulline in the effluent was used as a marker of NO production. In 13 groups of rats, increases in [14C]L-citrulline recovery were compared between right- and left-sided probes perfused with no additional drugs versus combinations of NMDA, AMPA, the NO synthase inhibitor N omega-nitro-L-arginine methyl ester (L-NAME), the non-competitive glutamate receptor blocker MK-801, the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), and dantrolene. RESULTS: Recovery of [14C]L-citrulline during perfusion with artificial CSF progressively increased to 272 +/- 73 fmol/min (+/-SEM) over 5 hours. Contralateral perfusion with 1 mmol/L L-NAME inhibited [14C]L-citrulline recovery. Perfusion with 1 mmol/L MK-801 or 1 mmol/L CNQX reduced [14C]L-citrulline recovery compared with contralateral perfusion with CSF alone. Perfusion with 1 mmol/L NMDA enhanced [14C]L-citrulline recovery, and this enhancement was attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. Perfusion with 1 mmol/L AMPA enhanced [14C]L-citrulline recovery, and this enhancement was also attenuated by L-NAME, MK-801, and CNQX but not by dantrolene. CONCLUSIONS: Through an indirect method of assessing NO production in vivo, results with MK-801 and CNQX indicate that NMDA and AMPA receptor activation contribute to basal NO production in the rat hippocampus. Enhanced NO production with NMDA and AMPA agonists appears to involve a complex neuronal interaction because the effect of NMDA was attenuated by both MK-801 and CNQX and because the effect of AMPA was attenuated by both CNQX and MK-801. In contrast to metabotropic glutamate receptor activation, release of calcium from intracellular ryanodine calcium channels does not appear to be a prominent mediator of ionotropic glutamate receptor stimulation of NO production.  相似文献   

5.
NMDA receptor activation has been implicated in modulating seizure activity; however, its complete role in the development of epilepsy is unknown. The pilocarpine model of limbic epilepsy involves inducing status epilepticus (SE) with the subsequent development of spontaneous recurrent seizures (SRSs) and is widely accepted as a model of limbic epilepsy in humans. The pilocarpine model of epilepsy provides a tool for looking at the molecular signals triggered by SE that are responsible for the development of epilepsy. In this study, we wanted to examine the role of NMDA receptor activation on the development of epilepsy using the pilocarpine model. Pretreatment with the NMDA receptor antagonist MK-801 does not block the onset of SE in the pilocarpine model. Thus, we could compare animals that experience similar lengths of SE in the presence or absence of NMDA receptor activation. Animals treated with MK-801 (4 mg/kg) 20 min prior to pilocarpine (350 mg/kg) (MK-Pilo) were compared to the pilocarpine treated epileptic animals 3-8 weeks after the initial episode of SE. The pilocarpine-treated animals displayed both ictal activity and interictal spikes on EEG analysis, whereas MK-801-pilocarpine and control animals only exhibited normal background EEG patterns. In addition, MK-801-pilocarpine animals did not exhibit any SRSs, while pilocarpine-treated animals exhibited 4.8 +/- 1 seizures per 40 h. MK-801-pilocarpine animals did not demonstrate any decrease in pyramidal cell number in the CA1 subfield of the hippocampus, while pilocarpine animals averaged 15% decrease in cell number. In summary, the MK-801-pilocarpine animals exhibited a number of characteristics similar to control animals and were statistically significantly different from pilocarpine-treated animals. Thus, NMDA receptor inhibition by MK-801 prevented the development of epilepsy and interictal activity following SE. These results indicate that NMDA receptor activation is required for epileptogenesis following SE in this model of limbic epilepsy.  相似文献   

6.
Spinal cord injury can lead to an exaggeration of transmission through spinal pathways, resulting in muscle spasticity, chronic pain, and abnormal control of blood pressure and bladder function. These conditions are mediated, in part, by N-methyl-D-aspartate (NMDA) receptors on spinal neurons, but the effects of cord injury on the expression or function of these receptors is unknown. Therefore, antibodies to the NMDA-R1 receptor subunit and binding of [3H]MK-801 were used to assess NMDA receptors in the spinal cord. Receptor density in rats with intact spinal cords was compared to that in rats 1 and 2 weeks after spinal cord transection (SCT) at the mid-thoracic level. At 1 and 2 weeks after SCT, [3H]MK-801 binding was reduced in most laminae in cord segments caudal to the injury, whereas no decrease in amount of R1 subunit immunoreactivity was observed. No significant changes in [3H]MK-801 binding and NMDA-R1 immunoreactivity could be seen rostral to the transection. Since [3H]MK-801 binding requires an open ion channel, the discrepancy between [3H]MK-801 binding and immunocytochemistry may indicate a loss of functional receptors without a consistent change in their total number. Therefore, the exaggerated reflexes that are well established in rats 2 weeks after cord injury must be mediated by a mechanism that withstands attenuation of NMDA receptor function.  相似文献   

7.
N-methyl-D-aspartate (NMDA) glutamate receptors mediate critical components of cardiorespiratory control in anesthetized animals. The role of NMDA receptors in the ventilatory responses to peripheral and central chemoreceptor stimulation was investigated in conscious, freely behaving rats. Minute ventilation (VE) responses to 10% O2, 5% CO2, and increasing intravenous doses of sodium cyanide were measured in intact rats before and after intravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume (VT) decreased while frequency increased, resulting in a modest reduction in VE. Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. The VE responses to hypercapnia were qualitatively similar in control and MK-801 conditions, with slight reductions in respiratory drive (VT/TI) after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT was unaffected. Sodium cyanide doses associated with significant VE increases were 5 and 50 microg/kg before and after MK-801, respectively. Thus 1-log shift to the right of individual dose-response curves occurred with MK-801. Selective carotid body denervation reduced VE during hypoxia by 70%, and residual hypoxic ventilatory responses were abolished after MK-801. These findings suggest that, in conscious rats, carotid and other peripheral chemoreceptor-mediated hypoxic ventilatory responses are critically dependent on NMDA receptor activation and that NMDA receptor mechanisms are only modestly involved during hypercapnia.  相似文献   

8.
Nitric oxide (NO) has been implicated in the establishment of precise synaptic connectivity throughout the neuroaxis in several species. To determine the contribution of NO to NMDA receptor-dependent dendritic growth in motor neurons, we administered the NMDA antagonist MK-801 to wild-type mice and neuronal nitric oxide synthase (nNOS) knock-out mice between postnatal days 7 and 14. Compared to saline-treated wild-type animals the number of dendritic bifurcations was significantly reduced in nNOS knock-out animals and MK-801-treated wild-type animals. There was no significant difference in dendritic bifurcation between MK-801-treated wild-type, MK-801-treated nNOS knock-out, and saline-treated nNOS knock-out animals, suggesting that nNOS knock-out and NMDA receptor block had similar effects. The path of the longest dendrite and the number of primary dendrites was the same in all treatment groups, indicating an effect specific to bifurcation. Sholl analysis revealed that differences in bifurcation numbers occurred between 160 and 320 micrometers from the cell body, the distance at which second, third, and fourth order dendrites are most prevalent. Dendrite order analyses confirmed a significant reduction in numbers, but not lengths, of third and fourth order dendrites in nNOS knock-out and drug-treatment groups. Finally, immunohistochemical examination of the developing spinal cord indicated that NMDA receptors and nNOS are colocalized within interneurons surrounding the motor neuron pool. These results support the view that at least part of NMDA receptor-dependent arborization of motor neuron dendrites is mediated by the local production of NO within the developing spinal cord.  相似文献   

9.
Retinal neurons that express the immediate early gene c-fos after light exposure were characterized by neurotransmitter content using histochemical and immunocytochemical staining. In Northern blots the amount of c-fos mRNA peaked at 30 min, but remained detectable 60 min following light stimulation. Fos proteins were seen in the inner nuclear and ganglion cell layers, and the staining was most intense two and three hours after beginning the light exposure. In the ganglion cell layer 30-40% of Fos-immunoreactive cells were cholinergic displaced amacrine cells and 3-5% were ganglion cells. In the inner nuclear layer 24% of Fos-immunoreactive cells were Type I and 7% Type II NADPH-diaphorase-reactive (nitric oxide synthase) amacrine cells, 11% were tyrosine hydroxylase-containing cells, and 10-15% cholinergic amacrine cells. No Fos immunoreactivity was seen in serotoninergic, somatostatin- or VIP-immunoreactive cells, bipolar, horizontal or photoreceptor cells. Nicotine, kainic acid, NMDA and SCH 38393, a dopamine D1 receptor agonist, induced Fos immunostaining in the inner nuclear and ganglion cell layers, but administration of the corresponding receptor blockers mecamylamine, kynuretic acid, MK-801, haloperidol and SCH 23990 did not prevent light-induced Fos expression.  相似文献   

10.
11.
Various doses of MK-801 ((+/-)-5-methyl-10,11-dihydro-5H-dibenzo(a,d) cyclohepten-5, 10-imine maleate), a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist (0.001-1 microgram) injected intracerebroventricularly (i.c.v.) alone did not show any antinociceptive effect. MK-801 (0.001-1 microgram i.c.v.) dose dependently attenuated the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered morphine (1 microgram), [D-Pen2, D-Pen5]enkephalin (DPDPE; 10 micrograms), and U50,488H (trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeoce tamide ) 60 micrograms). However, the inhibition of the tail-flick and hot plate responses induced by i.c.v. administered beta-endorphin (1 microgram) was not changed by i.c.v. administered MK-801. Our results indicate that, at the supraspinal level, NMDA receptors are involved in the production of antinociception induced by supraspinally administered morphine, DPDPE, and U50,488H but not beta-endorphin.  相似文献   

12.
The neuroprotective properties of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (MK-801) and the non-NMDA antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and alpha-methyl-4-carboxyphenylglycine (MCPG) were evaluated against neuronal injury produced by the intraspinal injection of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Forty-nine animals were divided into eight groups in order to evaluate the effects of different drug combinations: (a) NMDA; (b) NMDA + MCPG; (c) NMDA + NBQX; (d) NMDA + MK-801; (e) AMPA; (f) AMPA + MCPG; (g) AMPA + MK-801; and (h) AMPA + NBQX. Drugs were microinjected into spinal segments T12-L3 through a micropipette attached to a Hamilton microliter syringe. Spinal cords were evaluated after a survival period of 48 h at which time NMDA and AMPA were found to produce morphological changes over the concentration ranges of 125-500 mM and 75-500 microM, respectively. Neuronal loss following injections of NMDA + MK-801 or AMPA + NBQX was significantly less than that following injections of NMDA or AMPA alone. By contrast, neuronal loss following co-injections of NMDA or AMPA with inappropriate antagonists, i.e., NMDA + NBQX/MCPG or AMPA + MCPG/MK-801, was not significantly different from that produced by NMDA or AMPA. The results suggest that elevations in spinal levels of glutamate followed by prolonged activation of NMDA and AMPA receptor subtypes initiate an excitotoxic cascade resulting in neuronal injury. Blockade of NMDA and AMPA effects by MK-801 and NBQX respectively confirms the well documented neuroprotective effects of these drugs and lends support to the potential importance of NMDA and especially AMPA receptor antagonists as therapeutic agents in the treatment of acute spinal cord injury.  相似文献   

13.
We investigated the effect of chronically blocking NMDA receptor stimulation to examine changes in GABA(A) receptor expression and pharmacology in cerebellar granule cells at different stages of maturation. We have previously shown that NMDA-selective glutamate receptor stimulation alters GABA(A) receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunits. When NMDA receptor stimulation is blocked with MK-801 during the first week in vitro, a decrease in the alpha1, gamma2S, and gamma2L receptor subunit mRNAs occurred. When present only during the second week, changes were limited to the alpha1 and gamma2L mRNAs. Finally, if MK-801 was present during the first week and removed during the second week, these changes reversed. Whole-cell voltage-clamp recordings showed that treatment with MK-801 during either the first or second week increased the EC50 of the receptors for GABA and attenuated the potentiation mediated by flunitrazepam. Last, these properties were reversed if MK-801 was removed after the first week in vitro. Our results suggest that MK-801 reversibly inhibits GABA(A) receptor maturation by modulating receptor subunit expression and that the altered pharmacological responses appear to be dominated by changes in the levels of allosteric modulation mediated by the gamma2 receptor subunit.  相似文献   

14.
The odours of adult males, which accelerate the timing of puberty of female mice, activate c-fos in the accessory olfactory bulb (AOB). To test the hypothesis that NMDA receptors are involved in the male odour-induced increase in c-fos expression, we studied the effects of the non-competitive NMDA receptor agonist MK-801 on male odour-induced c-fos expression in the AOB of juvenile female mice. Surprisingly, MK-801 increased FOS-like immunoreactivity (FLI) within the AOB in the absence of male odour and had no effect on male odour-induced c-fos expression. We suggest that MK-801 increases AOB mitral cell activity by disinhibiting GABAergic granule cells, resulting in increased c-fos expression throughout the AOB.  相似文献   

15.
NMDA channel blockers are potentially advantageous therapeutic agents for the treatment of ischemia and head trauma, which greatly elevate extracellular glutamate, because they should most effectively inhibit high levels of receptor activation. A novel high affinity TCP site ligand, WIN 63480, does not produce MK-801- or PCP-like behavioral activation at anti-ischemic doses. While WIN 63480, MK-801 and PCP were all observed to be effective blockers of open NMDA channels, WIN 63480 had much less access to closed NMDA channels. This difference may be due to the fact that WIN 63480 is hydrophilic (logD = -4.1) while MK-801 and PCP are lipophilic (logD = +1.8). In vivo, closed channel access may result in a non-competitive profile of antagonism for MK-801 and PCP compared to a more uncompetitive profile for WIN 63480. Release of glutamate, and depolarization, are likely to produce a high level of NMDA receptor activation in ischemic areas compared to normal tissue. Consequently, at anti-ischemic doses, WIN 63480 may produce less inhibition of physiological NMDA-mediated processes in neural systems involved in behavioral regulation than MK-801 or PCP, leading to an improved side effect profile.  相似文献   

16.
We have investigated the effects of ketamine on nitric oxide produced by activated macrophages using a murine macrophage-like cell line, J774. Cells were incubated for 18 h under stimulation with lipopolysaccharide and interferon-gamma or lipoteichoic acid and interferon-gamma, with various concentrations of ketamine (6-600 mumol litre-1). Nitric oxide production was assessed by measuring nitrite, a stable by-product of nitric oxide breakdown, in the medium. Other N-methyl-D-aspartate receptor antagonists, MK-801 (150 mumol litre-1) and dextromethorphan (150 mumol litre-1) were also tested. In addition, we studied the effects of ketamine on production of tumour necrosis factor-alpha by activated macrophages. Ketamine inhibited nitrite production dose-dependently with both lipopolysaccharide- and lipoteichoic acid-activated macrophages by up to approximately 65% at the highest ketamine concentration (600 mumol litre-1). Neither MK-801 nor dextromethorphan had an inhibitory effect. Ketamine also suppressed production of tumour necrosis factor-alpha. The data show that ketamine inhibited nitric oxide production by activated macrophages probably, in part, via inhibition of production of tumour necrosis factor-alpha, an autocrine stimulatory factor for nitric oxide production, but not via the NMDA receptor pathway, which is involved in neuronal nitric oxide production.  相似文献   

17.
Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300 micrograms/10 microliters/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10 microliters/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.  相似文献   

18.
This review summarizes studies on the photic entrainment of the circadian rhythm in the rat pineal melatonin production, namely of the rhythm in N-acetyltransferase (NAT) activity, and compares the NAT rhythm resetting with preliminary results on the resetting of an intrinsic rhythmicity in the suprachiasmatic nucleus (SCN) of the hypothalamus, namely with the entrainment of the rhythm in the light-induced c-fos gene expression. Phase delaying of the NAT rhythm after various light stimuli proceeds within 1 day with almost no transients, whereas during phase advancing of the rhythm only the morning NAT decline is phase advanced within 1 day and the evening rise phase shifts through transients. A light stimulus encompassing the middle of the night may phase delay the evening NAT rise, phase advance the morning decline, compress the rhythm waveform, and eventually lower its amplitude. Similarly, a long photoperiod compresses the NAT rhythm waveform. The magnitude of phase shifts of the NAT rhythm, as well as their direction, depends on a previous photoperiod. Phase shifts of the evening rise in c-fos gene photoinduction in the SCN and of the morning decline are similar to those of the pineal NAT rhythm after all light stimuli studied so far. The data indicate that the resetting of the rhythm in melatonin production in the rat pineal gland reflects changes in the SCN functional state and suggest that the underlying SCN pacemaking system is complex.  相似文献   

19.
The binding of [3H]MK-801 to NMDA receptors was reduced by 40-45% in the dorsal and ventral horns of spinal cords from patients who died with amyotrophic lateral sclerosis (ALS) compared with controls. These results reflect either neurone death with concomitant receptor loss or regulation-related receptor decreases independent of motoneurone degeneration. To distinguish between these possibilities we explored aspects of NMDA receptor regulation using phorbol ester to activate protein kinase C (PKC). Spinal cord sections were exposed to phorbol ester before incubation with [3H]MK-801 to determine levels of NMDA binding. Phorbol ester treatment increased [3H]MK-801 binding in both ALS and control tissue to almost identical levels of specific binding for both groups. The increased [3H]MK-801 binding could be completely blocked by concurrent exposure of spinal cord sections to H-7, a general protein kinase inhibitor. These results suggest that NMDA receptors in ALS spinal cord are decreased as a result of abnormal enzyme activity independent of motoneurone degeneration.  相似文献   

20.
The presence of the N-methyl-D-aspartate (NMDA) receptor channel subunit epsilon 3 and zeta 1 mRNAs in the rat suprachiasmatic nucleus (SCN) was detected by sensitive in situ hybridization. The daily fluctuations in the epsilon 3 and zeta 1 subunit mRNAs in their abundance were found in the SCN to be high during the day and lower during the night under 12 h light:12 h dark conditions (LD 12:12). Under constant darkness for 15 days, both the epsilon 3 and the zeta 1 mRNA levels in the SCN remained cyclic. Furthermore, after exposure of rats to light, the epsilon 3 and zeta 1 subunit mRNAs increased during the subjective night, but not during the subjective day. These results implicate the involvement of the epsilon 3 and zeta 1 subunits in neuronal signaling in the SCN and suggest that these subunits of the NMDA receptor channel are regulated by light and a circadian clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号