首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol‐blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake‐specific energy consumption (BSEC), brake‐specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake‐thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Environmental concerns and limited amount of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. As an alternative, biodegradable, and renewable fuel, ethanol is receiving increasing attention. Therefore, in this study, influence of injection timing on the exhaust emission of a single cylinder, four stroke, direct injection, naturally aspirated diesel engine has been experimentally investigated using ethanol blended diesel fuel from 0% to 15% with an increment of 5%. The engine has an original injection timing 27° CA BTDC. The tests were performed at five different injection timings (21°, 24°, 27°, 30°, and 33° CA BTDC) by changing the thickness of advance shim. The experimental test results showed that NOx and CO2 emissions increased as CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. When compared to the results of original injection timing, at the retarded injection timings (21° and 24° CA BTDC), NOx and CO2 emissions increased, and unburned HC and CO emissions decreased for all test conditions. On the other hand, with the advanced injection timings (30° and 33° CA BTDC), HC and CO emissions diminished, and NOx and CO2 emissions boosted for all test conditions.  相似文献   

3.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NO x and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NO x emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions. __________ Translated from Chinese Internal Combustion Engine Engineering, 2007, 28(2): 19–23 [译自: 内燃机工程]  相似文献   

4.
Emulsions of diesel and water are often promoted as being able to overcome the difficulty of simultaneously reducing emissions of both oxidises of nitrogen (NOx) and particulate matter from diesel engines. In this paper we present measurements of the performance and NOx and hydrocarbon emissions of a diesel engine operating on a typical diesel oil emulsion and examine through the use of heat release analysis differences found during its combustion relative to standard diesel in the same engine. While producing similar or greater thermal efficiency and improved NOx and hydrocarbon emission outcomes, use of the emulsion also results in an increase in brake specific fuel consumption. Use of the emulsion is also shown to result in a retarded fuel injection, but smaller ignition delay for the same engine timing. As a result of these changes, cylinder pressures and temperatures are lower.  相似文献   

5.
Environmental concerns and limited resource of petroleum fuels have caused interests in the development of alternative fuels for internal combustion (IC) engines. For diesel engines, alcohols are receiving increasing attention because they are oxygenated and renewable fuels. Therefore, in this study, the effect of injection timing on the exhaust emissions of a single cylinder, naturally aspirated, four-stroke, direct injection diesel engine has been experimentally investigated by using methanol-blended diesel fuel from 0% to 15% with an increment of 5%. The tests were conducted for three different injection timings (15°, 20° and 25 °CA BTDC) at four different engine loads (5 Nm, 10 Nm, 15 Nm, 20 Nm) at 2200 rpm. The experimental test results showed that Bsfc, NOx and CO2 emissions increased as BTE, smoke opacity, CO and UHC emissions decreased with increasing amount of methanol in the fuel mixture. When compared the results to those of original injection timing, NOx and CO2 emissions decreased, smoke opacity, UHC and CO emissions increased for the retarded injection timing (15 °CA BTDC). On the other hand, with the advanced injection timing (25 °CA BTDC), decreasing smoke opacity, UHC and CO emissions diminished, and NOx and CO2 emissions boosted at all test conditions. In terms of Bsfc and BTE, retarded and advanced injection timings gave negative results for all fuel blends in all engine loads.  相似文献   

6.
In order to realize a premixed compression ignition (PCI) engine, the effects of bioethanol–gas oil blends and exhaust gas recirculation (EGR) on PM–NOx trade-off have been investigated focusing on ignition delay, premixed combustion, diffusion combustion, smoke, NOx and thermal efficiency. The present experiment was done by increasing the ethanol blend ratio and ethanol and by increasing the EGR ratio in a single cylinder direct injection diesel engine. It is found that a remarkable improvement in PM–NOx trade-off can be achieved by promoting the premixing based on the ethanol blend fuel having low evaporation temperature, large latent heat and low cetane number as well, in addition, based on a marked elongation of ignition delay due to the low cetane number fuel and the low oxygen intake charge. As a result, very low levels of NOx and PM, which satisfies the 2009 emission standards imposed on heavy duty diesel engines in Japan, were achieved without deterioration of brake thermal efficiency in the PCI engine fuelled with the 50% ethanol blend diesel fuel and the high EGR ratio. It is noticed that smoke can be reduced even by increasing the EGR ratio under the highly premixed condition.  相似文献   

7.
The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (33) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (Pmax), maximum heat release rate (HRRmax), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, Pmax, HRRmax and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, Pmax, HRRmax and NO emission at this injection timing, load and speed were 5.3%, 1.8%, 26% and 20% respectively. The best injection timing for Jatropha biodiesel operation with minimum BSFC, CO, HC and smoke and with maximum BTE, Pmax, HRRmax is found to be 340 CAD. Nevertheless, minimum NO emission yielded an optimum injection timing of 350 CAD.  相似文献   

8.
Recently, the increasing demand for energy requires the use of alternative fuels, especially in fossil fueled power systems. As a promising alternative fuel for next-generation diesel engines that utilize fossil fuel, hydrogen fuel is one step ahead due to its positive properties. In this study, the effects of hydrogen on the performance of a diesel engine have been numerically investigated with respect to different injection ratios and timings. The numerical results of the study for 25% load conditions on a single-cylinder, four-stroke diesel engine have been validated against experimental data taken from literature and good agreement has been observed for pressure results. Emission parameters such as NOx, CO and performance parameters such as cylinder temperature, pressure, power, thermal efficiency and IMEP are presented comparatively.The results of numerical analyses show that the maximum pressure, temperature and heat release rate are observed with injection ratio of H15 and early injection timing (20° CA BTDC). Besides that, engine power, thermal efficiency and IMEP are greatly improved with increasing injection ratio and early injection timing. Although combustion chamber performance parameters improve with rising the hydrogen injection ratio, higher NOx emissions have also been detected as a negative side effect. Furthermore, while early injection timing increases diesel engine performance, it also causes an increase in NOx emissions. Therefore, precise determination of injection timing together with the optimum amount of hydrogen has revealed that it brings crucial improvement in engine performance and emissions.  相似文献   

9.
O.M.I. Nwafor 《Renewable Energy》2007,32(14):2361-2368
There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30° BTDC. The injection was first advanced by 5.5° and given injection timing of 35.5° BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5°. The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO2 emissions were reduced through advanced injection timing.  相似文献   

10.
Due to the increasing demand for fossil fuels and environmental threat due to pollution a number renewable sources of energy have been studied worldwide. In the present investigation influence of injection timing on the performance and emissions of a single cylinder, four stroke stationary, variable compression ratio, diesel engine was studied using waste cooking oil (WCO) as the biodiesel blended with diesel. The tests were performed at three different injection timings (24°, 27°, 30° CA BTDC) by changing the thickness of the advance shim. The experimental results showed that brake thermal efficiency for the advanced as well as the retarded injection timing was lesser than that for the normal injection timing (27° BTDC) for all sets of compression ratios. Smoke, un-burnt hydrocarbon (UBHC) emissions were reduced for advanced injection timings where as NOx emissions increased. Artificial Neural Networks (ANN) was used to predict the engine performance and emission characteristics of the engine. Separate models were developed for performance parameters as well as emission characteristics. To train the network, compression ratio, injection timing, blend percentage, percentage load, were used as the input parameters where as engine performance parameters like brake thermal efficiency (BTE), brake specific energy consumption (BSEC), exhaust gas temperature (Texh) were used as the output parameters for the performance model and engine exhaust emissions such as NOx, smoke and (UBHC) values were used as the output parameters for the emission model. ANN results showed that there is a good correlation between the ANN predicted values and the experimental values for various engine performance parameters and exhaust emission characteristics and the relative mean error values (MRE) were within 8%, which is acceptable.  相似文献   

11.
Up to 90% hydrogen energy fraction was achieved in a hydrogen diesel dual-fuel direct injection (H2DDI) light-duty single-cylinder compression ignition engine. An automotive-size inline single-cylinder diesel engine was modified to install an additional hydrogen direct injector. The engine was operated at a constant speed of 2000 revolutions per minute and fixed combustion phasing of ?10 crank angle degrees before top dead centre (°CA bTDC) while evaluating the power output, efficiency, combustion and engine-out emissions. A parametric study was conducted at an intermediate load with 20–90% hydrogen energy fraction and 180-0 °CA bTDC injection timing. High indicated mean effective pressure (IMEP) of up to 943 kPa and 57.2% indicated efficiency was achieved at 90% hydrogen energy fraction, at the expense of NOx emissions. The hydrogen injection timing directly controls the mixture condition and combustion mode. Early hydrogen injection timings exhibited premixed combustion behaviour while late injection timings produced mixing-controlled combustion, with an intermediate point reached at 40 °CA bTDC hydrogen injection timing. At 90% hydrogen energy fraction, the earlier injection timing leads to higher IMEP/efficiency but the NOx increase is inevitable due to enhanced premixed combustion. To keep the NOx increase minimal and achieve the same combustion phasing of a diesel baseline, the 40 °CA bTDC hydrogen injection timing shows the best performance at which 85.9% CO2 reduction and 13.3% IMEP/efficiency increase are achieved.  相似文献   

12.
Being a fuel of different origin, the standard design parameters of a diesel engine may not be suitable for Jatropha methyl ester (JME). This study targets at finding the effects of the engine design parameters viz. compression ratio (CR) and fuel injection pressure (IP) jointly on the performance with regard to fuel consumption (BSFC), brake thermal efficiency (BTHE) and emissions of CO, CO2, HC, NOx and Smoke opacity with JME as fuel. Comparison of performance and emission was done for different values of compression ratio along with injection pressure to find best possible combination for operating engine with JME. It is found that the combined increase of compression ratio and injection pressure increases the BTHE and reduces BSFC while having lower emissions. For small sized direct injection constant speed engines used for agricultural applications (3.5 kW), the optimum combination was found as CR of 18 with IP of 250 bar.  相似文献   

13.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

14.
Combustion studies on both diesel fuel and vegetable oil fuels, with the standard and advanced injection timing, were carried out using the same engine and test procedures so that comparative assessments may be made. The diesel engine principle demands self-ignition of the fuel as it is injected at some degrees before top dead centre (BTDC) into the hot compressed cylinder gas. Longer delays between injection and ignition lead to unacceptable rates of pressure rise with the result of diesel knock because too much fuel is ready to take part in premixed combustion. Alternative fuels have been noted to exhibit longer delay periods and slower burning rate especially at low load operating conditions hence resulting in late combustion in the expansion stroke. Advanced injection timing is expected to compensate these effects. The engine has standard injection timing of 30°C BTDC. The injection was first advanced by 5.5°C given injection timing of 35.5°C BTDC. The engine performance was very erratic on this timing. The injection was then advanced by 3.5°C and the effects are presented in this paper. The engine performance was smooth especially at low load levels. The ignition delay was reduced through advanced injection but tended to incur a slight increase in fuel consumption. Moderate advanced injection timing is recommended for low speed operations.  相似文献   

15.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

16.
Fossil fuel run diesel engines are being favored in light, medium and heavy duty applications as they exhibit higher fuel conversion efficiencies. Direct injection diesels are still facing challenges to obtain trade-off between oxides of nitrogen and particulate emissions. There are sophisticated strategies such as common rail direct injection, particulate filters with associated sensors and actuators but limited to expensive comfort vehicles. In the present experimental study, a mechanically operated simple component, variable timing fuel injection cam, is designed for a 510 cc automotive type naturally aspirated, water-cooled, direct injection diesel engine. Modifications in the fuel injection cam and gear train are carried out to suit the existing engine configuration. Variable speed tests are carried out for testing the efficacy of component on both engine and chassis dynamometers for performance and emissions. It is observed that the engine which is already retarded could further be retarded with variable timing fuel injection cam. Significant reductions in NOx and smoke emission levels are achieved. Combined effect of VIC with 7% EGR could reduce CO by about 88%, HC + NOx by 37% and PM emissions by 90%. The Engine incorporated with the designed component and EGR, successfully satisfied the existing emission norms with improved power and specific fuel consumption.  相似文献   

17.
In the current work, the effect of using CPO (crude palm oil)-OD (ordinary diesel) blends as fuel on the performance of CI (compression ignition) engine is studied. Three different blends of CPO-OD (25%, 50% and 75%) were investigated using direct-injection, stationary diesel engine. The CPO-OD blends were preheated to about 60 °C before the injection to reduce the viscosity of the blends. The experiments were conducted at variable engine speeds (1000 rpm through 3000 rpm) under fixed throttle opening. The results revealed that the CPO-OD exhibited higher torque and power output at engine speeds lower than 2000 rpm, while the BSFC (brake specific fuel consumption) was found to be higher than the OD at the same engine speeds. CPO enhanced the BSFC at higher engine speeds (above 2000 rpm). The CPO-OD blends exhibited lower emissions of NOx and higher emission of CO compared to the OD.  相似文献   

18.
The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.  相似文献   

19.
This work aims to define the optimum n-decanol fraction in the inlet port and the corresponding engine load for the better emissions and performance characteristics of a partially premixed charged compression ignition (PCCI) engine by response surface methodology (RSM). The numerical model based on multi-linear regression was established using experimental data. For this, the influence of various proportions of n-decanol through intake port including 10%, 20%, 30%, and 40% were experimentally investigated besides the primary injection of neem oil biodiesel in the volumetric ratio of 80% diesel and 20% neem biodiesel, namely NB20. The optimization using RSM is exploited to capitalize the brake thermal efficiency (BTE) and diminish the emissions including oxides of nitrogen (NOx), carbon monoxide (CO) emission, smoke opacity, and hydrocarbon (HC) emission. The n-decanol fraction in the port injection of 31.43% and the engine load in terms of brake power of 2.950 kW were found to be optimum parameters with the maximum desirability of 0.752. The optimal responses for brake-specific fuel consumption (BSFC), BTE, CO, HC, smoke, and NOx under these operating conditions were found to be 0.305 kg/kWh, 28.8%, 0.145%, 19.61%, 54.85 ppm, and 837.7 ppm, respectively. Likewise, the correlation coefficient R2 values for BSFC, BTE, CO, HC, smoke and NOx have been found to be 99.85%, 99.95%, 93.58%, 90.32%, 99.97%, and 99.93%, respectively. According to the study's findings, the RSM is a realistic method for calculating and enhancing a diesel engine's emission and performance values operating in PCCI mode and using n-decanol and NB20 as fuels.  相似文献   

20.
M. Mani  G. Nagarajan 《Energy》2009,34(10):1617
Environmental concern and availability of petroleum fuels have caused interests in the search for alternate fuels for internal combustion engines. Waste plastics are indispensable materials in the modern world and application in the industrial field is continually increasing. In this context, waste plastics are currently receiving renewed interest. As an alternative, non-biodegradable, and renewable fuel, waste plastic oil is receiving increasing attention. The waste plastic oil was compared with the petroleum products and found that it can also be used as fuel in compression ignition engines. In the present work, the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine has been experimentally investigated using waste plastic oil as a fuel. Tests were performed at four injection timings (23°,20°,17° and 14° bTDC). When compared to the standard injection timing of 23° BTDC the retarded injection timing of 14° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon while the brake thermal efficiency, carbon dioxide and smoke increased under all the test conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号