首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
TiO2 nanocrystals (NCs) with sizes around 20 nm were synthesized by hydrothermal method in acidic autoclaving pH. The hydrothermally grown TiO2 NCs and P25 TiO2 nanoparticles (NPs) were used in the preparation of two different pastes using different procedures. These pastes with different characteristics were separately deposited on FTO glass plates to form multilayer photoanodes of the dye-sensitized solar cells. The aim of this study was to search how a thin sub-layer of the hydrothermally grown TiO2 NCs in the photoanodes could improve the efficiency of TiO2 P25-based solar cells. The highest efficiency of 6.5% was achieved for a cell with a photoanode composed of one transparent sub-layer of hydrothermally grown TiO2 NCs and two over-layers of P25 NPs. Higher energy conversion efficiencies were also attainable using two transparent sub-layers of hydrothermally grown TiO2 NCs. In this case, an efficiency of 7.2% was achieved for a cell with a photoelectrode made of one over-layer of P25 TiO2 NPs. This could show an increase of about 30% in the efficiency compared to the similar cell with a photoanode made of two layers of hydrothermally grown TiO2 NCs.  相似文献   

2.
3.
TiO2-based nanotubes (NTs), nanoparticles (NPs) and composite structural film (50% NP + 50% NT film) were synthesized by sol-gel hydrothermal process. Synthetic indigo dye was used as a sensitizer with the unique combination of electrolyte (EMII + BMII + PMII) and with cobalt sulphide as counter electrode. The structure and morphology of the three films, namely, NP, NT and NPNT is studied through X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorption spectra and incident photon-to-current conversion efficiency (IPCE) of the three films were compared and found to be higher for NPNT film. The efficiency and photocatalytic activity of three films were evaluated. The composite structure showed improved efficiency (1.72%) than NP (1%) and NT films (0.78%). The photocatalytic activity of the three films were measured using organic dye, methylene blue under UV light radiation. The composite structure showed higher dye absorption and higher rate of reaction with time. This paper certainly proves that there are many rooms to focus on the photoanode configuration, which plays a key role to improve the efficiency of dye-sensitized solar cell (DSSC).  相似文献   

4.
Pt-decorated \(\hbox {TiO}_{2}\) nanotubes Pt@TiO2 are prepared only by applying a set of facile wet-chemical redox reactions to ion track-etched polycarbonate templates. First, a homogeneous layer of Pt nanoparticles is deposited onto the complex template surface by reducing potassium tetrachloroplatinate with absorbed dimethylaminoborane. Second, the template is coated with a conformal \(\hbox {TiO}_{2}\) layer, using a chemical bath deposition reaction based on titanium(III) chloride. After the removal of the template, the rutile-type \(\hbox {TiO}_{2}\) nanotubes remain decorated with Pt nanoparticles and nanoparticle-clusters on their outside. During the process, neither vacuum techniques nor external current sources or addition of heat are employed. The crystallinity, composition, and morphology of the composite nanotubes are analysed by X-ray diffraction, scanning and transmission electron microscopy as well as by energy-dispersive X-ray spectroscopy. Finally, the obtained materials are examplarily applied in the electrooxidation of ethanol and formic acid, and their performances have been evaluated. Compared to conventional carbon black-supported Pt nanoparticles, the Pt@TiO2 nanotubes show higher reaction rates. Mass activities of 2.36 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) are reached in ethanol oxidation and 7.56 \(\hbox {A}\hbox { mg}_{\rm Pt}^{-1}\hbox { cm}^{-2}\) in the formic acid oxidation. The present structures are able to exploit the synergy of Pt and \(\hbox {TiO}_{2}\) with a bifunctional mechanism to result in powerful but easy-to-fabricate catalyst structures. They represent an easily producible type of composite nanostructures which can be applied in various fields such as in catalytics and sensor technology.  相似文献   

5.
The super-porous TiO2 film is prepared with the block copolymer Pluronic F-127 as porous template. Comparing with the commonly used meso-porous TiO2 film prepared with Polyethylene glycol 20,000 as pore former, the super-porous TiO2 film shows higher photovoltaic performance when integrated it into polymer gel electrolyte based quasi-solid-state dye-sensitized solar cell (QS-DSSC). The enhanced dye adsorption, light scattering properties of the super-porous TiO2 film improve the utilization efficiency of sun light to be converted to electricity. Moreover, the special microstructures of the super-porous TiO2 film also makes for the deep penetration of polymer gel electrolyte into the dye-coated TiO2 film, which is the prerequisite for highly photovoltaic performance of polymer gel electrolyte-based dye-sensitized solar cell. So it presents a feasible way to enhance the photovoltaic performance of QS-DSSC.  相似文献   

6.
The sub-micron size anatase TiO2 particles with size about 0.2-0.3 μm were synthesized with basic peptizing agent and hydrothermal method and added into TiO2 film as light scattering center. The addition of the sub-micron size anatase TiO2 particles enhanced light scattering and dye adsorption abilities of the TiO2 film. When the weight proportion of the sub-micron size/nano-size TiO2 particles in the TiO2 film attained to 1.25/10, the highest energy conversion efficiency about 7.41% was obtained, which was 23% enhancement comparing with the TiO2 film containing pure nano-size TiO2 particles. It presented an efficient way for improving the photovoltaic performance of dye-sensitized solar cell.  相似文献   

7.
Composites in the form of precipitated powders, hybrid xerogels, and SiO2 core/TiO2 shell particles have been produced via hydrolysis of precursors (alkoxides and inorganic derivatives of titanium and silicon) and have been characterized by differential thermal analysis, X-ray diffraction, adsorption measurements, and macroelectrophoresis. The results demonstrate that heat treatment of the composites leads to crystallization of the titanium-containing component and, accordingly, reduces their specific surface area. Hydrothermal treatment enables the fabrication of materials in which TiO2 nanocrystals are evenly distributed over an amorphous SiO2 matrix.  相似文献   

8.
In order to prepare the TiO2 liquid dispersions for the electrodes of dye-sensitized solar cells with industrial mass production level at a reasonable cost, the present study investigates the preparation of TiO2 liquid dispersions by a general industrial dispersion technique using readily available P25. To determine the TiO2 dispersion offering the best light–electricity energy conversion efficiency, the suitability of various types of solvents and resins for use in TiO2 dispersion are tested. In general, organic solvent based TiO2 dispersions are found to allow the formation of more uniform thin films in comparison with water-based dispersions. A preparation using ethyl cellulose as the resin and the terpineol as the solvent is found to exhibit the best conversion efficiency. We have also found that using two kinds of resins of different molecular weights gave rise to better efficiency. Among 26 metal compounds tested in this study, the best metal dopant was Ag. XRD and XPS measurements confirm that the Ag exists as metal Ag and silver oxide.  相似文献   

9.
TiO2 and TiO2:Fe thin films have been grown by electron beam evaporation and the influence of doping and heat treatment on their electrical and optical properties has been studied.  相似文献   

10.
Using the method based on the density functional theory, the geometric and electronic properties of the TiO2 single-wall nanotubes, constructed by rolling the most stable nanosheet along the (n, 0) and (n, n) directions, have been investigated systematically. The nanotubes with size from n?=?6 up to n?=?20 have been modeled and studied. The strain energies of the nanotubes decrease monotonically as the radii of the nanotubes increase, regardless of the rolling direction. The band gaps of the nanotubes are increasing with the increase of the n value, approaching the value of the nanosheet. However, there is one nanotube significantly different from the others, i.e., the (6, 0) nanotube. The substantial structural change of (6, 0) nanotube causes a reduction of the band gap. Then, the isovalent sulfur (S) substitution and adsorption with the (6, 0) nanotube have been studied. Energetically, S adsorption at the inner surface is preferred. Electronically, the band gaps are further reduced by 35% for S substitution of oxygen and 22% for S adsorption, respectively, making the nanotube visible light-sensitive.  相似文献   

11.
Cluster like mesoporous TiO2 spheres, nanorods and nanoparticles were synthesized by simple wet chemical method. The TiO2 mesoporous spheres, nanorods and nanoparticles were characterized by powder X-ray diffraction, Raman spectroscopy, ultraviolet visible spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy and transmission electron microscopy. Accordingly, a possible growth mechanism of mesoporous spheres, nanorods and nanoparticles were discussed. The changes of the dye-sensitized solar cell (DSSC) performance with the variation of the nanostructures of TiO2 which were used in photoanodes have been investigated. The TiO2 mesoporous sphere based DSSC with the film thickness of 20 μm was assembled and a conversion efficiency of 6.69% was obtained.  相似文献   

12.
A liquid fuel high velocity oxy-fuel (HVOF) thermal spray process has been used to deposit TiO2 nanostructured coatings utilizing a commercially available nanopowder as the feedstock. The coatings were characterized by means of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM), respectively. Photocatalytic activity was evaluated as a rate constant of decomposition reaction of methylene blue (MB) determined from the changes of relative concentration of MB with UV irradiation time. The results indicate that the sprayed TiO2 coatings were composed of both TiO2 phases viz. anatase and rutile, with different phase contents and crystallite sizes. A high anatase content of 80% by volume was achieved at 0·00015, fuel-to-oxygen ratio with nanostructure coating by grain size smaller than feedstock powder. Photocatalytic activity evaluation results indicated that all the TiO2 coatings are effective to degradation MB under UV radiation and their activities differ in different spray conditions. It is found that fuel flow rate strongly influenced on phase transformation of anatase to rutile and by optimizing the rate which can promote structural transformation and grain coarsening in coating and improving photocatalytic activity.  相似文献   

13.
The photoelectrochemical properties of TiO2, CdS, and TiO2/CdS anodes have been studied. The results demonstrate that, under illumination, CdS anodes are subject to photocorrosion, and Cd2+ ions pass into solution. Corrosion-resistant films of TiO2 prevent CdS photocorrosion, and the CdS/TiO2 system exhibits good photosensitivity in the visible range.  相似文献   

14.
N/TiO2, S/TiO2, and N S/TiO2 nanocrystalline films anode were obtained by doping non-metallic element N and S which could change the LUMO of anode, leading to the easy injection of electron from the excited state of dye molecule to the conduction band of semiconductor, and thus improving the photoelectric conversion efficiency and reducing the impedance of solar cells. The anode films treated by titanium tetrachloride and co-sensitized by P3HT/N719 were also studied. The absorption region of P3HT/N719 covered the entire visible region in the solar cells. The solar cell based on N/TiO2 anode film treated by titanium tetrachloride and P3HT/N719 showed a short-circuit current density of 10.20 mA/cm2, open-circuit voltage of 0.557 V, and photoelectric conversion efficiency of 2.55%.  相似文献   

15.
This paper aims to demonstrate the efficiency and recombination improvement of Dye-sensitized solar cells (DSSCs) by introducing of a Nanodiamond (NDs)-TiO2 nano composite. The main challenge in the proposed application is to find the optimal wt.% of ND in TiO2. The experimental tests were conducted to compare the developed NDs/TiO2 cell with one of pure TiO2 nanoparticles prepared in the same conditions. It was observed that short circuit current density, power conversion efficiency, fill factor and electron life time enhanced with increasing ND content. The best performance was obtained with 1 wt.% ND content; with a current density of 12.11 mA/cm2 and light-to-electricity conversion efficiency of 4.95%. The improvement in efficiency of 18.7% was obtained as the standard DSSC was compared with that of pure TiO2.  相似文献   

16.
Titanium dioxide (TiO2) thin films were prepared by sol–gel spin coating method and deposited on ITO-coated glass substrates. The effects of different heat treatment annealing temperatures on the phase composition of TiO2 films and its effect on the optical band gap, morphological, structural as well as using these layers in P3HT:PCBM-based organic solar cell were examined. The results show the presence of rutile phases in the TiO2 films which were heat-treated for 2 h at different temperatures (200, 300, 400, 500 and 600 °C). The optical properties of the TiO2 films have altered by temperature with a slight decrease in the transmittance intensity in the visible region with increasing the temperature. The optical band gap values were found to be in the range of 3.28–3.59 eV for the forbidden direct electronic transition and 3.40–3.79 eV for the allowed direct transition. TiO2 layers were used as electron transport layer in inverted organic solar cells and resulted in a power conversion efficiency of 1.59% with short circuit current density of 6.64 mA cm?2 for TiO2 layer heat-treated at 600 °C.  相似文献   

17.
Reduction of porous titanium oxide precursors by the FFC-Cambridge process is reported in this paper. Porous TiO2 precursors were prepared by mixing the powder with different concentrations of graphite and polyethylene as fugitive agents and sintered at 1,073 K. The maximum porosity achieved before the mixture saturation was approximately 75%. After the electro-deoxidation by the FFC-Cambridge process, shrinkage of approximately 40% in volume and increase in porosity were observed, which might be due to atomic rearrangement, change of density and subsequent grain growth during reduction. The potential applied (below the decomposition potential of CaCl2) had a direct effect on the minimum level of oxygen achieved, which was approximately 3,000 ppm for 48 h at 3.00 V and the same level at half the time (24 h) when increasing potential to 3.15 V. On the other hand, thin layers (300 μm thickness) screen-printed on titanium foils showed shorter reduction time than that observed for thicker porous pellets. This led to the conclusion that cathode geometry (porosity and thickness of the pellet) might have an effect on the rate of reduction by increasing the surface area available and improving the mass diffusion of oxygen ions.  相似文献   

18.
Reactions between barium oxide and different forms of titanium dioxide during milling in air and subsequent heat treatment have been studied by X-ray diffraction, Raman spectroscopy, and differential scanning calorimetry. The results indicate that, when the low-temperature forms of TiO2 are used, milling produces weakly aggregated barium titanate powders with a large specific surface area.  相似文献   

19.
We developed a process for preparing SiO2/TiO2 fibers by means of precursor transformation method. After mixing PCS and titanium alkoxide, continuous SiO2/TiO2 fibers were fabricated by the thermal decomposition of titanium-modified PCS (PTC) precursor. The tensile strength and diameter of SiO2/TiO2 fibers are 2.0 GPa, 13 μm, respectively. Based on X-ray diffraction (XRD), scanning electron microscopy (SEM), and high resolution transmission electron microscopy (HRTEM) measurements, the microstructure of the SiO2/TiO2 fibers is described as anatase–TiO2 nanocrystallites with the mean size of ~10 nm embedded in an amorphous silica continuous phase.  相似文献   

20.
One-dimension carbon self-doping g-C3N4 nanotubes (CNT) with abundant communicating pores were synthesized via thermal polymerization of saturated or supersaturated urea inside the framework of a melamine sponge for the first time. A ~16% improvement in photoelectric conversion efficiency (η) is observed for the devices fabricated with a binary hybrid composite of the obtained CNT and TiO2 compared to pure TiO2 device. The result of EIS analysis reveals that the interfacial resistance of the TiO2-dye|I3?/I? electrolyte interface of TiO2-CNT composite cell is much lower than that of pure TiO2 cell. In addition, the TiO2-CNT composite cell exhibits longer electron recombination time, shorter electron transport time, and higher charge collection efficiency than those of pure TiO2 cell. Systematic investigations reveal that the CNT boosts the light harvesting ability of the photovoltaic devices by enhancing not only the visible light absorption but also the charge separation and transfer.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号