首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dayam R  Sanchez T  Neamati N 《ChemMedChem》2006,1(2):238-244
HIV-1 integrase (IN) is an essential enzyme for viral replication and a validated target for the development of drugs against AIDS. Currently there are no approved drugs that target IN. However, new IN inhibitors are under clinical investigation. As more IN inhibitors enter human drug trials, there is a growing need for the design of novel lead compounds with diverse structural scaffolds and promising pharmacokinetic properties to counteract the difficulties observed with first-generation IN inhibitors. We have identified a novel class of IN inhibitors through the systematic exploration of structure-activity relationships in a series of linomide analogues. The predicted bound conformation of the most active analogues inside the IN active site also supports the observed structure-activity correlation in this new compound class.  相似文献   

2.
Corticotropin Releasing Factor (CRF) antagonists are considered promising for treatment of stress-related illnesses such as major depression and anxiety-related disorders. We report here the design, synthesis and biological evaluation of 91 truncated astressin analogues in order to deduce the pharmacophoric amino acid residues. Such truncated peptides may serve as valuable lead structures for the development of new small, non-peptide-based CRF antagonists. N-Terminal truncation of astressin led to active CRF antagonists that are substantially reduced in size and are selectively active at the human CRF receptor type 1 in vitro and in vivo. Subsequently, an alanine scan in combination with further truncated derivatives led to the proposal of a new pharmacophoric model of peptide-based CRF antagonists. It was found that the astressin(27-41)C sequence is the shortest active CRF antagonist. The first eight N-terminal amino acid residues were found to be an important structural determinant and were replaceable by alanine residues, thus enhancing the alpha-helical propensity. A covalent structural constraint is of utmost importance for the preorganization of the C-terminal amino acid residues. The C-terminal heptapeptide sequence, however, was found to be crucial for the antagonistic activity, since substitution or deletion of any residue led to inactive compounds.  相似文献   

3.
Reddy TR  Li C  Fischer PM  Dekker LV 《ChemMedChem》2012,7(8):1435-1446
Protein interactions are increasingly appreciated as targets in small‐molecule drug discovery. The interaction between the adapter protein S100A10 and its binding partner annexin A2 is a potentially important drug target. To obtain small‐molecule starting points for inhibitors of this interaction, a three‐dimensional pharmacophore model was constructed from the X‐ray crystal structure of the complex between S100A10 and annexin A2. The pharmacophore model represents the favourable hydrophobic and hydrogen bond interactions between the two partners, as well as spatial and receptor site constraints (excluded volume spheres). Using this pharmacophore model, UNITY flex searches were carried out on a 3D library of 0.7 million commercially available compounds. This resulted in 568 hit compounds. Subsequently, GOLD docking studies were performed on these hits, and a set of 190 compounds were purchased and tested biochemically for inhibition of the protein interaction. Three compounds of similar chemical structure were identified as genuine inhibitors of the binding of annexin A2 to S100A10. The binding modes predicted by GOLD were in good agreement with their UNITY‐generated conformations. We synthesised a series of analogues revealing areas critical for binding. Thus computational predictions and biochemical screening can be used successfully to derive novel chemical classes of protein–protein interaction blockers.  相似文献   

4.
Peptides that interact with lipopolysaccharide (LPS) can provide the basis for the development of new antisepsis agents. In this work, several LPS-neutralizing acyl peptides derived from LALF, BPI, and SAP were prepared, structurally characterized, and biologically evaluated. In all cases, peptides with long acyl chains showed greater LPS-neutralizing activities than the original acetylated peptides. Structural analysis of these peptides revealed that N-acylation with long acyl chains promotes the formation of micellar or fibril-like nanostructures, thus proving a correlation between anti-LPS activity and nanostructure formation. The results of this study provide useful structural insight for the future design of new acyl peptides that strongly bind LPS and therefore act as antisepsis drugs. Furthermore, this nanostructure-biological activity correlation can be translated into other therapeutic areas.  相似文献   

5.
Two new classes of potent and selective CRF(1) receptor antagonists are presented. Exploration of general templates 3 and 4 through modifications of the top amine and bottom phenyl substituents led to optimization of the in vitro affinity and pharmacokinetic profiles. The typical alkyl chains present in the top region of CRF(1) antagonists were replaced by substituted heteroaryl moieties, leading to a dramatic improvement of the metabolic stability. This improvement was apparent when the compounds were dosed in vivo: several compounds exhibited low plasma clearance, good oral bioavailability, and high brain penetration. As a consequence of their outstanding pharmacokinetic profiles, these CRF(1) antagonists, as exemplified by compound 4 fi (4-(4-bromo-3-methyl-1H-pyrazol-1-yl)-7-(2,4-dichlorophenyl)-2-methyl-6,7-dihydro-5H-pyrrolo[2,3-d]pyrimidine), produced a dose-dependent "anxiolytic-like" effect when administered orally, decreasing the vocalization of rat pups.  相似文献   

6.
New ferrocene and N‐alkylcarbazole retinoids were designed and synthesized stereoselectively in good yields. A number of these synthesized ligands, in particular 2 , 3 , and 11 , were found to exhibit a high RARα activation potential and to effectively induce post‐differentiation apoptosis in NB4 acute promyelocytic leukemia (APL) cells. Increasing the length of the side chain attached to the heterocycle of the carbazole arotinoids creates new opportunities for altered compound catabolism and for fine‐tuning of the apoptosis‐inducing potential of the ligand. In the carbazole series of new retinoids, maximal activity was established for N‐butylcarbazole analogue 11 in all assays (i.e., RARα activation, differentiation induction, and apoptosis induction). Study of the mechanism of apoptosis revealed an activation of initiator caspases‐8 and ‐9, followed by efficient cleavage of effector caspase‐3 on day 6 of treatment. Subsequent induction of a caspase cascade in NB4 cells triggered ultimate leukemic cell death. The selected ligands 2 , 3 , and 11 may provide alternate options for the treatment of APL in cases of life‐threatening ATRA syndrome, resistance, and high toxicity to conventionally used retinoids.  相似文献   

7.
From a high-throughput screening (HTS) hit with inhibitory activity against virus-induced cytophathic in the low micromolar range, we have developed a potent anti-influenza lead through careful optimization without compromising the drug-like properties of the compound. An orally bioavailable compound was identified as a lead agent with nanomolar activity against influenza, representing a 140-fold improvement over the initial hit.  相似文献   

8.
Structure–activity relationships within the indole‐3‐glyoxylamide series of antiprion agents have been explored further, resulting in discovery of several new compounds demonstrating excellent activity in a cell line model of prion disease (EC50 <10 nM ). After examining a range of substituents at the para‐position of the N‐phenylglyoxylamide moiety, five‐membered heterocycles containing at least two heteroatoms were found to be optimal for the antiprion effect. A number of modifications were made to probe the importance of the glyoxylamide substructure, although none were well tolerated. The most potent compounds did, however, prove largely stable towards microsomal metabolism, and the most active library member cured scrapie‐infected cells indefinitely on administration of a single treatment. The present results thereby confirm the indole‐3‐glyoxylamides as a promising lead series for continuing in vitro and in vivo evaluation against prion disease.  相似文献   

9.
10.
TWIK-related acid-sensitive K(+) (K(2P) 9.1, TASK-3) ion channels have the capacity to regulate the activity of neuronal pathways by influencing the resting membrane potential of neurons on which they are expressed. The central nervous system (CNS) expression of these channels suggests potential roles in neurologic disorders, and it is believed that the development of TASK-3 antagonists could lead to the therapeutic treatment of a number of neurological conditions. While a therapeutic potential for TASK-3 channel modulation exists, there are only a few documented examples of potent and selective small-molecule channel blockers. Herein, we describe the discovery and lead optimization efforts for a novel series of TASK-3 channel antagonists based on a 5,6,7,8-tetrahydropyrido[4,3-d]pyrimidine high-throughput screening lead from which a subseries of potent and selective inhibitors were identified. One compound was profiled in detail with respect to its physical properties and demonstrated pharmacological target engagement as indicated by its ability to modulate sleep architecture in rodent electroencephalogram (EEG) telemetry models.  相似文献   

11.
Toll‐like receptors (TLRs) are critical signaling molecules with roles in various severe clinical conditions such as sepsis and rheumatoid arthritis, and have therefore been advocated as promising drug targets for the treatment of these diseases. The aim of this study was to discover small‐molecule antagonists of TLR2 by computer‐aided drug design. This goal poses several challenges due to the lack of available data on TLR2 modulators. To overcome these hurdles we developed a combined structure‐ and ligand‐based virtual screening approach. First, we calculated molecular interaction fields of the TLR2 binding site to derive a structure‐based 3D pharmacophore, which was then used for virtual screening. We then performed a two‐step shape‐ and feature‐based similarity search using known TLR2 ligands as query structures. A selection of virtual screening hits was biologically tested in a cell‐based assay for TLR2 signaling inhibition, leading to the identification of several compounds with antagonistic activity (IC50 values) in the low‐micromolar range.  相似文献   

12.
The human immunodeficiency virus 1 (HIV-1) virion infectivity factor (Vif) protein, essential for in vivo viral replication, protects the virus from innate antiviral cellular factor apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (APOBEC3G; A3G) and is an attractive target for the development of novel antiviral therapeutics. We have evaluated the structure-activity relationships of N-(2-methoxyphenyl)-2-((4-nitrophenyl)thio)benzamide (RN-18), a small molecule recently identified as an inhibitor of Vif function that blocks viral replication only in nonpermissive cells expressing A3G, by inhibiting Vif-A3G interactions. Microwave-assisted cross-coupling reactions were developed to prepare a series of RN18 analogues with diverse linkages and substitutions on the phenyl rings. A dual cell-based assay system was used to assess antiviral activity against wild-type HIV-1 in both nonpermissive (H9) and permissive (MT4) cells that also allowed evaluation of specificity. In general, variations of phenyl substitutions were detrimental to antiviral potency and specificity, but isosteric replacements of amide and ether linkages were relatively well tolerated. These structure-activity relationship data define structural requirements for Vif-specific activity, identify new compounds with improved antiviral potency and specificity, and provide leads for further exploration to develop new antiviral therapeutics.  相似文献   

13.
Marco E  Gago F 《ChemMedChem》2007,2(10):1388-1401
X-ray crystallography, NMR spectroscopy, and cryoelectron microscopy stand out as powerful tools that enable us to obtain atomic detail about biomolecules that can be potentially targeted by drugs. This knowledge is essential if virtual screening or structure-based ligand-design methods are going to be used in drug discovery. However, the macromolecule of interest is not always amenable to these types of experiment or, as is often the case, the conformation found experimentally cannot be used directly for docking studies because of significant changes between apo and bound forms. Furthermore, sometimes the desired insight into the binding mechanism cannot be gained because the structure of the ligand-receptor complex, not having been time-resolved, represents the endpoint of the binding process and therefore retains little or no information about the intermediate stages that led to its creation. Molecular dynamics (MD) simulations are routinely applied these days to the study of biomolecular systems with the aims of sampling configuration space more efficiently and getting a better understanding of the factors that determine structural stability and relevant biophysical and biochemical processes such as protein folding, ligand binding, and enzymatic reactions. This field has matured significantly in recent years, and strategies have been devised (for example activated, steered, or targeted MD) that allow the calculated trajectories to be biased in attempts to properly shape a ligand binding pocket or simulate large-scale motions involving one or more protein domains. On the other hand, low-frequency motions can be simulated quite inexpensively by calculation of normal modes which allow the investigation of alternative receptor conformations. Selected examples in which these methods have been applied to several medicinal chemistry and in silico pharmacology endeavors are presented.  相似文献   

14.
15.
The estrogen receptor binding affinities of bivalent raloxifene ligands tethered by flexible spacers of different lengths have been evaluated in vitro. Two bivalent binding modes, intra- and intermolecular, were hypothesized to explain their different binding properties. The binding affinities of these bivalent ligands in an aqueous environment are influenced by their conformations, which can be determined by 2D NMR and UV spectral methods. Moreover, computer modeling and simulations were performed to explain the binding modes of these bivalent ligands and to estimate the conformational entropy difference between their unbound and bound states. It was found that bivalent ligands tethered by long spacers had weaker binding affinities because of the shielding of the binding moieties that results from their folded conformations; those tethered by short spacers had stronger affinities because they exposed their ligands to the receptor.  相似文献   

16.
17.
18.
19.
20.
A 50-compound library based on the marine natural product oroidin was synthesized and assayed for anti-biofilm activity against PAO1 and PA14, two strains of the medically relevant gamma-proteobacterium Pseudomonas aeruginosa. Through structure-activity relationship (SAR) analysis of analogues based on the oroidin template, several conclusions can be drawn as to what structural properties of the synthetic derivatives are necessary to elicit a biological response. Notably, the most active analogues identified were those that contained a 2-aminoimidazole (2-AI) motif and a dibrominated pyrrolecarboxamide subunit. Here we disclose the synthesis and subsequently determined biological activity of this unique class of compounds as inhibitors of biofilm formation that have no direct antibiotic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号