首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
碳包覆纳米磁性颗粒(CEMNPs)是一种具有核/壳结构的新型纳米复合材料,独特的理化性质使其在众多技术领域显示出巨大的应用潜力。随着全球化石能源的日渐枯竭,利用廉价、易获取、环境友好的生物质原料作为替代碳源已成为近年来CEMNPs材料的研究热点。综述了生物质基CEMNPs的制备方法、反应机理以及在电化学、催化、吸附等领域中的应用,最后展望了其发展方向和趋势。  相似文献   

2.
以Fe(NO3)3,CO(NH2)2和萘为原料,掺入一定量黑索金(RDX),在真空的爆炸容器中引爆,从而制备出碳包覆铁碳化合物的纳米材料。通过XRD,TEM以及Raman等检测手段对所得爆轰产物进行表征。结果表明,产物由碳包覆Fe2.5C以及富勒烯组成,其中,包覆结构以无定型碳作为外壳,将Fe2.5C内核完全包覆起来。利用爆轰法制备碳包覆材料,方法简单、迅速,节省能源。  相似文献   

3.
碳包覆铁纳米颗粒制备及电磁性能分析   总被引:5,自引:0,他引:5  
以纤维素为基质,硝酸铁为金属颗粒前躯体,在氢气保护下进行控温炭化合成出准球形的碳包覆铁纳米颗粒.产物通过TEM、EDX和XRD表征呈核壳结构,粒径分布比较窄.通过波导法对所制备的碳包覆铁纳米颗粒进行吸波性能分析,采用矢量网络仪研究分析其在8.2~12.4GHz频率范围内的电磁性能.  相似文献   

4.
直流碳弧等离子体法制备碳包覆铁纳米颗粒研究   总被引:3,自引:0,他引:3  
在惰性保护气氛下,采用直流碳弧等离子体法成功制备了碳包覆铁纳米颗粒,并利用x射线衍射(XRD)、高分辨透射电子显微镜(HRTEM)、X射线能谱仪(EDS)、透射电子显微镜(TEM)和相应选区电子衍射(ED)等测试手段,对样品的化学成分、形貌、物相结构、粒度等特征进行表征分析.实验结果表明:直流碳弧等离子体技术制备的碳包覆纳米金属颗粒具有明显的核-壳结构,内核金属结晶度较高,外壳碳为类石墨层结构,颗粒大多呈球形和椭球形,粒径分布在20nm~60nm范围,平均粒径为44nm.  相似文献   

5.
碳包裹纳米铁粒子的制备及其磁性研究   总被引:1,自引:0,他引:1  
以离子交换树脂(D113)为碳源,与二价铁离子交换后形成含金属的前驱体(Fe/D113),经400~700℃热解制备了碳包裹纳米铁粒子.用XRD、HRTEM等技术对热解产物的形貌和结构进行了分析表征,初步分析了其形成机理并用VSM研究了热解产物的磁性能.结果表明:Fe/D113的热稳定性要强于D113;400~700℃的热解产物中铁的晶体结构与热解温度有关,且热解产物中的纳米铁粒子的粒径随热解温度的升高而增大.磁性能研究表明,400℃热解产物具有超顺磁特性,500~700℃热解产物的矫顽力Hc均远大于相应的块体铁,并与产物中纳米铁粒子的尺寸有关;所有热解产物比饱和磁化强度Ms小于相应的块体材料,并随其中纳米铁粒子尺寸的增大而增加.  相似文献   

6.
合成碳包覆纳米金属材料的研究现状   总被引:1,自引:0,他引:1  
合成碳包覆纳米金属材料具有奇特的电学、光学和磁学性质,是纳米科技方面一个非常活跃且众人关注的课题.总结了合成碳包覆纳米金属材料具有代表性的方法,如电孤放电法、化学气相沉积法、高温热解法、低温热解法、聚能法、爆轰法等.简要综述了其合成机理及优缺点.  相似文献   

7.
本文主要介绍了目前碳包覆纳米金属材料的主要合成途径及其形成机理,主要合成途径有:电弧放电法、化学气相沉积法、高温热解法、低温热解法、聚能法、爆炸法、机械球磨法等。根据合成工艺,总结阐述了碳包金属材料在电磁性存储、微电子技术、生物医学、催化材料、光电辐射技术等不同领域的应用。  相似文献   

8.
利用钨电极电弧法制备了碳包覆铁纳米微粒,采用酸洗加磁选的方法对初产物进行了纯化.用透射电子显微镜、X射线衍射仪和振动样品磁强计对产物的形貌结构、物相组成以及磁性能进行了表征分析.结果表明:该纯化方法可以有效地去除产物中未被包覆或碳包覆不完整的铁颗粒及各类碳杂质,纯化后的产物以包覆多层碳膜的铁纳米颗粒为主;粉体的磁滞回线也表明经纯化后产物的磁性能得到了明显提高.  相似文献   

9.
甲烷气氛中激光-感应复合加热制备碳包覆纳米铝粉   总被引:1,自引:0,他引:1  
在甲烷气氛中采用激光-感应复合加热法制备了碳包覆纳米铝粉。使用XRD、TEM、HRTEM对碳包覆纳米铝粉进行物相、形貌、结构分析。结果表明,制备的纳米胶囊粒径范围为8~40nm。平均粒径28nm,纳米铝粒子表面包覆了3-4层石墨碳。对碳包覆纳米铝粉的形成机理进行了讨论。  相似文献   

10.
以均四甲苯为炭源、乙酰丙酮钴为金属源的前驱体,采用热缩聚和溶剂抽提工艺合成碳包覆纳米金属粒子,用TEM、XRD等对材料的结构、性能表征分析,同时对纳米金属粒子的形成机理进行初步探讨,实验结果表明,在均四甲苯和乙酰丙酮钴一定比率下,随着温度的升高,产物的产率逐渐增大,被包覆的金属颗粒主要以fcc-Co晶型存在,被包覆的钴颗粒多数为形状规则、分散均匀的球形,在反应温度为480℃时,钴粒子均匀性最好,颗粒的粒径最小。  相似文献   

11.
Fe3O4包覆碳纳米管软磁性纳米复合微粒的制备及性能   总被引:1,自引:2,他引:1  
用水解沉淀法在碳纳米管(CNTs)外包覆Fe3O4,制备了CNTs/Fe3O4纳米复合磁性微粒,借助透射电镜、振动探针式磁强计和外加磁场黏度计对其微观形貌、静态磁性能、沉降稳定性和磁流变性能进行了研究。结果表明:Fe3O4在碳纳米管(直径约20nm)表面形成了紧密的包覆层,微粒呈一维纳米管状结构,平均管径约60nm,平均表观密度为1.8g/cm^3,为传统磁流变液中所用铁粉等软磁性颗粒密度的四分之一。复合微粒的磁滞回线与Fe3O4纳米颗粒较为相似,具有较好的软磁性,其饱和磁感应强度(Bs)为0.21T,矫顽力(以)为7.67kA/m,用该软磁性复合微粒配制的磁流变液具有良好的沉降稳定性和磁流变特性。  相似文献   

12.
用直流电弧等离子法蒸发Co-B非晶合金,以Co-B非晶合金靶材,制备了BN包裹Co和少量CoB合金的纳米颗粒,用高分辨电镜、X-Ray衍射及选区电子衍射和光致发光光谱及红外光谱对其进行了表征.结果表明,所制备的纳米颗粒是一种具有核壳结构的纳米胶囊,尺寸为10-100 nm,核由Co和少量CoB合金组成,壳是厚度为3~5 am的BN;Co/CoB作为催化剂在蒸发时促使B与N反应,生成BN包覆在其表面形成纳米胶囊.壳核结构能防止纳米Co颗粒的氧化和团聚.这种纳米胶囊的饱和磁化强度为63.16 Am2/kg,矫顽力为23.16 kA/m.其矫顽力比相应的块体材料提高的主要原因,是颗粒尺寸变小和多畴粒子畴壁的钉扎作用.  相似文献   

13.
Fe_3O_4磁流体制备及磁性能研究   总被引:2,自引:0,他引:2  
采用共沉淀法制备了3种不同粒径的Fe3O4纳米粒子,并分别将其分散在水中制备成磁流体.采用超导量子干涉仪分别测量了不同粒径磁粒子及其磁流体的磁性能.实验结果显示:粉末状Fe3O4粒子的比饱和磁化强度和矫顽力均随粒径的增加而增大;磁流体中的磁粒子比饱和磁化强度也随着粒径的增加而增大,但3种样品的矫顽力均为零,显示出超顺磁性;相同粒径的Fe3O4粒子,在磁流体中的比饱和磁化强度较粉末状态时为低.  相似文献   

14.
由中间相沥青制备泡沫炭:Fe(NO3)3的影响   总被引:13,自引:5,他引:13  
以中间相沥青为前驱体制备高性能泡沫炭,在考察中间相沥青、Fe(NO3)3及其混合物热分解行为的基础上,着重研究了Fe(NO3)3对制备中间相沥青基泡沫炭的影响,揭示了Fe(NO3)3对泡沫炭孔泡结构的影响规律及其作用机制,初步研究了在泡沫炭炭化过程中形成的Fe/C之物相结构及其石墨化行为。结果表明,在不同的炭化温度下,Fe在泡沫炭中的存在形态各异;Fe物种的存在有利于提高泡沫炭的石墨化程度。  相似文献   

15.
以硬脂酸为疏水改性剂,将其与Fe_(3)O_(4)纳米颗粒和市售CaCO_(3)共混,分别以不同的原料质量比,制备疏水磁性碳酸钙HMC-1和HMC-2,并将HMC-2负载在PU海绵上用以提高其实用性能。采用X射线粉末衍射仪、红外光谱仪、差示扫描量热仪、接触角/表界面张力测量仪对合成样品的物相、表面有机官能团、热稳定性及疏水性能进行系列表征分析。结果表明,HMC-2比HMC-1,具有更稳定的疏水性能,除油前后水接触角基本保持不变,约为150°,除油后该材料没有出现类似HMC-1的铁渗出现象。将HMC-2负载在PU海绵上后,改性PU海绵在3 s内可去除98%的油,重复吸油20次仍能达到95%以上的除油率,吸油倍率(吸附油质量/吸附剂质量)大于100。  相似文献   

16.
采用酸碱共滴定法,以超顺磁性的纳米Fe3 O4为形核剂,成功制备 HAP/Fe3 O4、CS-HAP/Fe3 O4磁性纳米载体。利用透射电镜(TEM)、X 射线衍射仪(XRD)、傅里叶红外光谱分析仪(FT-IR)、振动样品磁强计(VSM)和 MTT 法对样品的显微结构、物相、磁性能和生物学性能进行了表征和分析。结果表明,所制备载体表现为超顺磁性,尺寸约为100 nm,均为20 nm左右的羟基磷灰石颗粒包裹20 nm 左右的Fe3 O4颗粒而成。其中双相载体中的 HAP 颗粒呈球形,三相载体中的 H AP颗粒呈短棒状。双相载体为1级细胞毒性反应,三相载体为0级毒性反应,具有促细胞增殖作用。  相似文献   

17.
Carbon- and boron-oxide-encapsulated iron nanocapsules have been synthesized by arc discharge in methane (CH4) and diborane (B2H6) atmospheres respectively. The characterization and magnetic properties of carbon- and boron-oxide-encapsulated iron nanocapsules [abbreviated as Fe(C) and Fe(B) respectively] were investigated and compared. The structure of the Fe(B) nanocapsules is different from that of the Fe(C) nanocapsules. The Fe(C) nanocapsules consist of a crystalline graphite shell and a core of alpha-Fe and/or Fe3C. The Fe(B) nanocapsules consist of an amorphous boron-oxide layer and a core of Fe(B) solid solution, alpha-Fe, gamma-Fe, FeB, and/or Fe3B phases. The saturation magnetizations of both the Fe(C) and the Fe(B) nanocapsules below 300 K decrease monotonically with increasing temperature. The coercivities of the Fe(C) and Fe(B) nanocapsules are almost 2 orders of magnitude higher than that of bulk Fe. The temperature dependence of magnetization at high temperatures indicates the existence of some phase transformations.  相似文献   

18.
用SnCl4和FeCl3为原料,采用化学共沉淀法制备掺杂Fe2O3的纳米SnO2,运用差热(DSC)、X射线粉末衍射(XRD)和透射显微镜(TEM)等方法对Fe2O3和SnO2混杂纳米粉末的物相和粒径进行了分析。结果发现:与纯SnO2相比,(1)掺杂Fe2O3可以降低前驱体Sn(OH)4分解制备SnO2纳米晶的焙烧温度,从纯Sn(OH)4的分解温度345.7℃下降到341.1℃;(2)掺杂Fe2O3可以有效阻碍SnO2纳米晶的团聚和长大,前驱体在650℃焙烧时,纯SnO2晶粒在25nm,而掺杂Fe2O3的SnO2晶粒可以保持在2nm左右;(3)掺杂Fe2O3使前驱体焙烧制备SnO2的温度范围更宽,对制备小于10nm的SnO2纳米晶,纯SnO2的焙烧温度范围在400~550℃,而掺杂Fe2O3的焙烧温度范围在400~650℃;(4)SnO2/Fe2O3复合粉末在650℃以下,其晶体结构保持溶剂SnO2的四方结构,部分Fe元素置换了Sn的位置;650℃以上,复合粉末从溶剂晶格中析出Fe2O3形成两相结构。  相似文献   

19.
采用物理交联的方法制备了聚乙烯醇(PVA)/明胶/Fe3O4磁敏感性水凝胶。对Fe3O4磁敏感性水凝胶在加入明胶前后的力学性能及溶胀性能进行了对比分析,利用SEM、IR等对水凝胶进行表征,采用振动样品磁强计测试了其磁敏感性。结果表明,PVA/Fe3O4磁敏感性水凝胶加入明胶后,其力学性能明显增强,提高了0.4~0.7MPa,当磁性粒子含量为1.5%时,力学性能较好;加入明胶后,水凝胶脱水率和溶胀度都随着磁性粒子增加而增大;从SEM照片及IR图上可知,加入明胶后,PVA、明胶和Fe3O4三者相容性较好;测得的水凝胶磁敏感性较好。  相似文献   

20.
以Fe(NO3)3·9H2O为原料、以尿素为沉淀剂,用热解前驱体法制备出直径为40~60 nm的球状纳米氧化铁。使用XRD、SEM和EDS等手段对其表征,研究了Fe3+浓度、反应温度等因素对纳米氧化铁的粒径和形貌的影响、确定了球状纳米氧化铁的制备条件并分析了球状纳米氧化铁的形成机理。结果表明:随着Fe(NO3)3·9H2O溶液温度的提高纳米氧化铁的结晶度随之提高、粒径增大。Fe(NO3)3·9H2O的浓度对纳米氧化铁样品的粒度和形貌的影响不大。球状氧化铁纳米的形成机理是:铁源在水热条件下水解和结晶生成棕黄色絮状沉淀FeOOH,FeOOH在高温高压条件下溶解和再结晶生成了球状纳米氧化铁。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号