共查询到20条相似文献,搜索用时 15 毫秒
1.
ID Grozdova NA Alexandrova EV Sveshnikova NS Melik-Nubarov PG Sveshnikov ES Severin 《Canadian Metallurgical Quarterly》1996,40(6):1159-1166
The regulatory subunit type II (RII) of cAMP-dependent protein kinase purified from human brain was represented by two proteins with apparent molecular masses of 51-52 kD and 54 kD. Dephosphorylation of human RII containing 3 mol phosphate/mol protein did not change the electrophoretic pattern. One-dimensional peptide mapping of 51-52 kD and 54 kD proteins after digestion with St. aureus V8 protease evidenced to their being distinct proteins. The data obtained permit to assume that human RII of neural type is represented by two isoforms. 相似文献
2.
The cytosolic extract from Drosophila heads was separated using anion-exchange column chromatography. Two types of cAMP-dependent protein kinase (PKA), type I and type II, were detected, and type II PKA was found to be a major isozyme. The regulatory subunit of type II PKA (RII) was purified, and only one isoform was observed. The purified protein had an apparent molecular mass of 51 kDa on SDS gel electrophoresis. Partial amino acid sequences of the protein were almost identical with the RII alpha subunit of human. Since PKA has been implicated to be especially important for learning and memory in Drosophila, the RII subunit may play an essential role in the regulation of neuronal activity in the brain of Drosophila, and possibly in human. 相似文献
3.
Mitosis-specific phosphorylation and subcellular redistribution of the RIIalpha regulatory subunit of cAMP-dependent protein kinase 总被引:1,自引:0,他引:1
G Keryer M Yassenko JC Labbé A Castro SM Lohmann D Evain-Brion K Taskén 《Canadian Metallurgical Quarterly》1998,273(51):34594-34602
Phosphorylation of the RII regulatory subunits of cyclic AMP-dependent protein kinases (PKAs) was examined during the HeLa cell cycle. Three RIIalpha isoforms of 51, 54, and 57 kDa were identified by RIIalpha immunodetection and labeling with 8-azido[32P]cAMP in different cell cycle phases. These isoforms were characterized as different phosphorylation states by the use of selective PKA and cyclin-directed kinase inhibitors. Whereas RIIalpha autophosphorylation by PKA caused RIIalpha to shift from 51 to 54 kDa, phosphorylation of RIIalpha by one other or a combination of several kinases activated during mitosis caused RIIalpha to shift from 51 to 57 kDa. In vivo incorporation of [32P]orthophosphate into mitotic cells and RIIalpha immunoprecipitation demonstrated that RIIalpha was hyperphosphorylated on a different site than the one phosphorylated by PKA. Deletion and mutation analysis demonstrated that the cyclin B-p34(cdc2) kinase (CDK1) phosphorylated human recombinant RIIalpha in vitro on Thr54. Whereas RIIalpha was associated with the Golgi-centrosomal region during interphase, it was dissociated from its centrosomal localization at metaphase-anaphase transition. Furthermore, particulate RIIalpha from HeLa cell extracts was solubilized following incubation with CDK1 in vitro. Our results suggest that at the onset of mitosis, CDK1 phosphorylates RIIalpha, and this may alter its subcellular localization. 相似文献
4.
The species-dependent compartmentation of type I cAMP-dependent protein kinase (PKA I) and its dissociated regulatory subunit (RI) was examined in the heart by biochemical and immunohistochemical means. PKA I and RI were resolved from type II cAMP-dependent protein kinase and its regulatory subunit by DEAE-Sephacel chromatography of the supernatant and Triton X-100 soluble particulate fractions of heart homogenates. The relative amounts of holoenzymes and subunits were determined by cAMP-binding, protein kinase, 8-N3-[32P]cAMP photoaffinity labeling, and Western blot assays. Rat, rabbit, and guinea pig hearts all contained PKA I to varying degrees, but only in the supernatant fractions. Significant amounts of dissociated RI were found in the supernatant fractions, and to a lesser extent the particulate fractions, of these species. In contrast, though no PKA I was detected in the supernatant or particulate fractions of pig and beef heart, half of the cAMP-binding activity in the particulate fraction was attributed to RI. The results suggest that RI may associate with membrane fractions when it is not associated with the PKA catalytic subunit. Immunohistochemical studies of tissue sections from pig, beef, and rat cardiac ventricle using antibodies directed against RI also revealed species-dependent localization of RI. Cardiac myocyte intercalated discs were stained in pig and beef sections with additional sarcolemmal staining in beef sections. Rat ventricle, which contained large amounts of supernatant PKA I, showed nuclear staining. The localization of RI to cardiac myocyte intercalated discs and sarcolemma in certain species suggests a role(s) for this subunit in mediating cAMP-regulated events in these regions. 相似文献
5.
Coexpression of the yeast N-myristyltransferase with the murine catalytic subunit of cAMP-dependent protein kinase in prokaryotic cells results in the N-myristylation of the recombinant catalytic subunit. The acylated recombinant catalytic subunit was purified following in vitro holoenzyme formation with a mutant form of the regulatory subunit and compared to the non-myristylated recombinant enzyme and to the mammalian porcine enzyme. All three enzymes are very similar in terms of their kinetic properties and their capacity to reassociate in vitro with the regulatory subunit to form holoenzyme. In contrast, the myristylated recombinant catalytic subunit is significantly more stable to thermal denaturation than the non-myristylated enzyme. Its thermal stability is now comparable to the mammalian enzyme. All three catalytic subunits are significantly more stable to thermal denaturation when they are part of the holoenzyme complex. Each shows an increase in T1/2 of 10 degrees C. This study demonstrates that one function for the myristic acid at the NH2 terminus of the catalytic subunit is to provide structural stability. 相似文献
6.
Short- and long-term ethanol exposures have been shown to alter cellular levels of cAMP, but little is known about the effects of ethanol on cAMP-dependent protein kinase (PKA). When cAMP levels increase, the catalytic subunit of PKA (C alpha) is released from the regulatory subunit, phosphorylates nearby proteins, and then translocates to the nucleus, where it regulates gene expression. Altered localization of C alpha would have profound effects on multiple cellular functions. Therefore, we investigated whether ethanol alters intracellular localization of C alpha. NG108-15 cells were incubated in the presence or absence of ethanol for as long as 48 h, and localization of PKA subunits was determined by immunocytochemistry. We found that ethanol exposure produced a significant translocation of C alpha from the Golgi area to the nucleus. C alpha remained in the nucleus as long as ethanol was present. There was no effect of ethanol on localization of the type I regulatory subunit of PKA. Ethanol also caused a 43% decrease in the amount of type I regulatory subunit but had no effect on the amount of C alpha as determined by Western blot. These data suggest that ethanol-induced translocation of C alpha to the nucleus may account, in part, for diverse changes in cellular function and gene expression produced by alcohol. 相似文献
7.
8.
EL de Hostos G McCaffrey R Sucgang DW Pierce RD Vale 《Canadian Metallurgical Quarterly》1998,9(8):2093-2106
The cellular slime mold Dictyostelium discoideum is an attractive system for studying the roles of microtubule-based motility in cell development and differentiation. In this work, we report the first molecular characterization of kinesin-related proteins (KRPs) in Dictyostelium. A PCR-based strategy was used to isolate DNA fragments encoding six KRPs, several of which are induced during the developmental program that is initiated by starvation. The complete sequence of one such developmentally regulated KRP (designated K7) was determined and found to be a novel member of the kinesin superfamily. The motor domain of K7 is most similar to that of conventional kinesin, but unlike conventional kinesin, K7 is not predicted to have an extensive alpha-helical coiled-coil domain. The nonmotor domain is unusual and is rich in Asn, Gln, and Thr residues; similar sequences are found in other developmentally regulated genes in Dictyostelium. K7, expressed in Escherichia coli, supports plus end-directed microtubule motility in vitro at a speed of 0.14 micron/s, indicating that it is a bona fide motor protein. The K7 motor is found only in developing cells and reaches a peak level of expression between 12 and 16 h after starvation. By immunofluorescence microscopy, K7 localizes to a membranous perinuclear structure. To examine K7 function, we prepared a null cell line but found that these cells show no gross developmental abnormalities. However, when cultivated in the presence of wild-type cells, the K7-null cells are mostly absent from the prestalk zone of the slug. This result suggests that in a population composed largely of wild-type cells, the absence of the K7 motor protein interferes either with the ability of the cells to localize to the prestalk zone or to differentiate into prestalk cells. 相似文献
9.
LC Etchebehere MX Van Bemmelen C Anjard F Traincard K Assemat C Reymond M Véron 《Canadian Metallurgical Quarterly》1997,248(3):820-826
The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases. 相似文献
10.
KS Bruno R Aramayo PF Minke RL Metzenberg M Plamann 《Canadian Metallurgical Quarterly》1996,15(21):5772-5782
In filamentous fungi, growth polarity (i.e. hyphal extension) and formation of septa require polarized deposition of new cell wall material. To explore this process, we analyzed a conditional Neurospora crassa mutant, mcb, which showed a complete loss of growth polarity when incubated at the restrictive temperature. Cloning and DNA sequence analysis of the mcb gene revealed that it encodes a regulatory subunit of cAMP-dependent protein kinase (PKA). Unexpectedly, the mcb mutant still formed septa when grown at the restrictive temperature, indicating that polarized deposition of wall material during septation is a process that is, at least in part, independent of polarized deposition during hyphal tip extension. However, septa formed in the mcb mutant growing at the restrictive temperature are mislocalized. Both polarized growth and septation are actin-dependent processes, and a concentration of actin patches is observed at growing hyphal tips and sites where septa are being formed. In the mcb mutant growing at the restrictive temperature, actin patches are uniformly distributed over the cell cortex; however, actin patches are still concentrated at sites of septation. Our results suggest that the PKA pathway regulates hyphal growth polarity, possibly through organizing actin patches at the cell cortex. 相似文献
11.
R Solberg K Taskén W Wen VM Coghlan JL Meinkoth JD Scott T Jahnsen SS Taylor 《Canadian Metallurgical Quarterly》1994,214(2):595-605
The human regulatory subunit RI beta of cAMP-dependent protein kinases was expressed in Escherichia coli as a fusion protein with glutathione S-transferase. Purification was performed by affinity chromatography on glutathione-agarose beads after cleavage with thrombin. The human recombinant RI beta protein migrated at 55 kDa on SDS-PAGE and displayed immunoreactivity with an anti-human RI beta antiserum. Furthermore, the purified recombinant RI beta protein was shown to exist as a dimer that was able to form holoenzyme with the catalytic subunit C alpha. The rate of RI beta 2C alpha 2 holoenzyme formation was faster in the presence than in the absence of MgATP. The kinase activity measured before and after adding cAMP to the holoenzyme showed that the presence of cAMP resulted in holoenzyme dissociation and release of active C alpha-subunit, due to cAMP binding to RI beta. Compared to a RI alpha 2C alpha 2 holoenzyme, the RI beta 2C alpha 2 holoenzyme exhibited a more than twofold higher sensitivity to cAMP. The subcellular localization of RI beta was analyzed in quiescent REF-52 fibroblasts and Wistar rat thyroid (WRT) cells after microinjection of fluorescently labeled proteins into the cytoplasm. A cytoplasmic distribution was observed when free RI beta was injected, whereas free C alpha injected into the cytoplasm appeared in the nucleus. When holoenzymes with labeled RI beta and unlabeled C alpha, or unlabeled RI beta and labeled C alpha, were injected, unstimulated cells showed fluorescence in the cytoplasm of both cell types. REF-52 cells stimulated with 8-bromo-cAMP (8-Br-cAMP) and WRT cells treated with thyrotropin (TSH) showed fluorescence mainly in the cytoplasm when RI beta was the labeled subunit of the in vivo dissociated holoenzyme. In contrast, nuclear fluorescence was evident from the release and translocation of labeled C alpha from the holoenzyme complex after stimulation with 8-Br-cAMP or TSH. 相似文献
12.
G Keryer Z Luo JC Cavadore J Erlichman M Bornens 《Canadian Metallurgical Quarterly》1993,90(12):5418-5422
Subcellular localization of type II cAMP-dependent protein kinase is determined by the interactions of the regulatory subunit (RII) with specific RII-anchoring proteins. By using truncated NH2-terminal RII beta fusion proteins expressed in Escherichia coli and the mitotic protein kinase p34cdc2 isolated from HeLa cells or starfish oocytes, we investigated the in vitro phosphorylation of RII beta by these kinases. The putative site for phosphorylation by the mitotic kinases is Thr-69 in the NH2-terminal domain of RII beta. This phosphorylation site matches the consensus sequence X(T/S)PX(K/R) for p34cdc2 recognition and belongs to a well-conserved sequence found in all RII beta sequences known to date. In contrast to phosphorylation by casein kinase II or the cAMP-dependent protein kinase catalytic subunit, phosphorylation of RII beta by mitotic kinases impaired its interaction with a well-known RII-anchoring protein, the neuronal microtubule-associated protein 2. The potential regulatory significance of the phosphorylation of this site on the interaction with microtubule-associated protein 2 and other RII-anchoring proteins and the physiological relevance of this cyclin B/p34cdc2 kinase-catalyzed modification of RII beta (or phosphorylation by other proline-directed protein kinases) are discussed. 相似文献
13.
The nucleotide sequence of the gene for the Dictyostelium homologue of eukaryotic ribosomal protein S17 has been assembled from cDNA and genomic DNA clones. The predicted primary structure of the S17 protein displays a similar level of sequence identity with its counterparts from higher eukaryotes (53%) as other Dictyostelium ribosomal proteins. Although Dictyostelium genes usually are organized in a rather simple manner, the rps17 gene harbors two introns. One of them, located immediately 3' from the ATG initiator codon, appears to be ubiquitously conserved in eukaryotic rps17 genes. 相似文献
14.
EJ Baude SS Dignam SR Olsen EM Reimann MD Uhler 《Canadian Metallurgical Quarterly》1994,269(3):2316-2323
Although the protein kinase inhibitors (PKIs) are known to be potent and specific inhibitors of the catalytic (C) subunit of cAMP-dependent protein kinase, little is known about their physiological roles. Glutamate 203 of the C alpha isoform (C alpha E203) has been implicated in the binding of the arginine 15 residue of the skeletal isoform of PKI (PKI alpha R15) (Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N., Taylor, S.S., and Sowadski, J. M. (1991) Science 253, 414-420). To investigate the role of C alpha E203 in the binding of PKI and in vivo C-PKI interactions, in vitro mutagenesis was used to change the C alpha E203 codon of the murine C alpha cDNA to alanine and glutamine codons. Initially, the C alpha E203 mutant proteins were expressed and purified from Escherichia coli. C alpha E203 is not essential for catalysis as all of the C subunit mutants were enzymatically active. The mutation of Glu203 did increase the apparent Km for Leu-Arg-Arg-Ala-Ser-Leu-Gly (Kemptide) severalfold but did not affect the apparent Km for ATP. The Vmax(app) was not affected by the mutation of C alpha E203. The mutation of C alpha E203 compromised the ability of PKI alpha (5-24), PKI alpha, and PKI beta to inhibit phosphotransferase activity. PKI alpha was altered using in vitro mutagenesis to probe the role of Arg15 in interacting with C alpha E203. The PKI alpha R15A mutant was reduced in its inhibition of C alpha. Preliminary studies of the expression of these C alpha mutants in COS cells gave similar results. These results suggest that the C alpha E203 mutants may be useful in assessing the role of PKI in vivo. 相似文献
15.
Three amino acids were identified in the catalytic (C) subunit of the cyclic AMP-dependent protein kinase that are involved in interaction with regulatory (R) subunit, but not with the specific protein kinase inhibitor, PKI. In a functional assay for gene induction, a C expression vector with serine or arginine substituted for Leu-198 and the double mutant C, His-87-->Gln/Trp-196-->Arg (Orellana, S. A., and McKnight, G. S. (1992) Proc. Natl. Acad. Sci, U.S.A. 89, 4726-4730), retained activity in the presence of an excess of RI or RII. In contrast, cotransfection of a full-length PKI expression vector completely inhibited the activity of both mutant and wild type C subunits. These data suggest that although the substrate/pseudosubstrate sites of R and PKI interact with C at the catalytic site, there is an additional domain on the C subunit that is involved in holoenzyme formation with R subunit and is distinct from sites specifying high affinity PKI binding. 相似文献
16.
S Pepe A Ruggiero G Tortora F Ciardiello C Garbi H Yokozaki YS Cho-Chung T Clair BS Skalhegg AR Bianco 《Canadian Metallurgical Quarterly》1994,15(1):73-79
cAMP-dependent protein kinase (PKA) is composed of two genetically distinct catalytic (C) and regulatory (R) subunits. There are two different classes of PKA, designated as type I and type II, which contain distinct R subunits (RI or RII, respectively) but share a common C subunit. Enhanced expression of type I PKA has been correlated with cell proliferation and neoplastic transformation. Detection of the different PKA subunits is usually performed by photoaffinity labeling with 8-N3-32P-cAMP or by radioimmunolabeling techniques. Both techniques are time consuming and require a high number of cells and the use of radioactive reagents. Using the MCF-10A normal human mammary cell line infected with a recombinant retroviral vector containing the human RI alpha gene (MCF-10A RI alpha), we have developed a flow-cytometric assay to detect the intracellular content of RI alpha protein in human cells. MCF-10A and MCF-10A RI alpha cells were fixed in 1.5% paraformaldehyde at 37 degrees C for 15 min and permeabilized by methanol and acetone (1:1) at -20 degrees C for 5 min before staining with a specific IgG2a MoAb followed by a FITC-conjugate rabbit-anti mouse IgG. This procedure was also successfully utilized to recognize RI alpha protein content in human peripheral blood lymphocytes. Flow-cytometric detection of the RI alpha subunit in human cells is feasible and allows the study of the role of type I PKA in cell growth and neoplastic transformation. 相似文献
17.
Based on increasing evidence that the type I R subunits as well as the type II R subunits localize to specific subcellular sites, we have carried out an extensive characterization of the stable dimerization domain at the N terminus of RIalpha. Deletion mutants as well as alanine scanning mutagenesis were used to delineate critical regions as well as particular amino acids that are required for homodimerization. A set of nested deletion mutants defined a minimum core required for dimerization. Two single site mutations on the C37H template, RIalpha(F47A) and RIalpha(F52A), were sufficient to abolish dimerization. In addition to serving as a dimerization motif, this domain also serves as a docking surface for binding to dual specificity anchoring proteins (D-AKAPs) (Huang, L. J., Durick, K., Weiner, J. A., Chun, J., and Taylor, S. S. (1997) J. Biol. Chem. 272, 8057-8064; Huang, L. J., Durick, K., Weiner, J. A., Chun, J., and Taylor, S. S. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11184-11189). A similar strategy was used to map the sequence requirements for anchoring of RIalpha to D-AKAP1. Although dimerization appears to be essential for anchoring to D-AKAP1, anchoring can also be abolished by the following single site mutations: C37H, V20A, and I25A. These sites define "hot spots" for the anchoring surface since each of these dimeric proteins are deficient in binding to D-AKAP1. In contrast to earlier predictions, the alignment of the dimerization/docking domains of RIalpha and RII show striking similarities yet subtle differences not only in their secondary structure (Newlon, M. G., Roy, M., Hausken, Z. E., Scott, J. D., and Jennings. P. A. (1997) J. Biol. Chem. 272, 23637-23644) but also in the distribution of residues important for both docking and dimerization functions. 相似文献
18.
Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor 总被引:3,自引:0,他引:3
J Zheng DR Knighton LF ten Eyck R Karlsson N Xuong SS Taylor JM Sowadski 《Canadian Metallurgical Quarterly》1993,32(9):2154-2161
The structure of a ternary complex of the catalytic subunit of cAMP-dependent protein kinase, MgATP, and a 20-residue inhibitor peptide was determined at a resolution of 2.7 A using the difference Fourier technique starting from the model of the binary complex (Knighton et al., 1991a). The model of the ternary complex was refined using both X-PLOR and TNT to an R factor of 0.212 and 0.224, respectively. The orientation of the nucleotide and the interactions of MgATP with numerous conserved residues at the active site of the enzyme are clearly defined. The unique protein kinase nucleotide binding site consists of a five-stranded antiparallel beta-sheet with the base buried in a hydrophobic site along beta-strands 1 and 2 and fixed by hydrogen bonds to the N6 amino and N7 nitrogens. The small lobe secures the nucleotide via a glycine-rich loop and by ion pairing with Lys72 and Glu91. While the small lobe fixes the nontransferable alpha- and beta-phosphates in this inhibitor complex, the gamma-phosphate is secured by two Mg2+ ions and interacts both directly and indirectly with several residues in the large lobe--Asp184, Asn171, Lys168. Asp166 is positioned to serve as a catalytic base. The structure is correlated with previous chemical evidence, and the features that distinguish this nucleotide binding motif from other nucleotide binding proteins are delineated. 相似文献
19.
Modulation of protein kinase C (PKC) and cAMP-dependent protein kinase (PKA) activities by delta-opioid receptor specific agonist [D-Pen2, D-Pen5]-enkephalin (DPDPE) was investigated in neuroblastoma x glioma hybrid NG 108-15 cells. DPDPE activated PKC in a dose-dependent manner, with the maximal response at 5 min. The DPDPE-stimulated PKC activation could be blocked by naltrindole. The activation of PKC by DPDPE was dependent on Ca2+ and was inhibited by chelerythrine chloride (10 microM), but not by H89 (1 microM). Pretreatment of NG 108-15 cells with pertussis toxin (100 ng/ml for 24 h) completely abolished DPDPE-stimulated PKC activation. In contrast to the result from the acute treatment with DPDPE, which had no significant effect on PKA activity, chronic treatment of DPDPE (1 microM for 24 h) increased PKA activity, but reduced the basal activity of PKC. These results demonstrated that DPDPE differentially modulated PKC and PKA activities via a receptor-mediated, PTX sensitive pathway. 相似文献
20.
N Narayana S Cox X Nguyen-huu LF Ten Eyck SS Taylor 《Canadian Metallurgical Quarterly》1997,5(7):921-935
BACKGROUND: cAMP-dependent protein kinase (cAPK), a ubiquitous protein in eukaryotic cells, is one of the simplest members of the protein kinase family. It was the first protein kinase to be crystallized and continues to serve as a biochemical and structural prototype for this family of enzymes. To further understand the conformational changes that occur in different liganded and unliganded states of cAPK, the catalytic subunit of cAPK was crystallized in the absence of peptide inhibitor. RESULTS: The crystal structure of the catalytic subunit of mouse recombinant cAPK (rC) complexed with adenosine was solved at 2.6 A resolution and refined to a crystallographic R factor of 21.9% with good stereochemical parameters. This is the first structure of the rC subunit that lacks a bound inhibitor or substrate peptide. The structure was solved by molecular replacement and comprises two lobes (large and small) which contain a number of conserved loops. CONCLUSIONS: The binary complex of rC and adenosine adopts an 'intermediate' conformation relative to the previously described 'closed' and 'open' conformations of other rC complexes. Based on a comparison of these structures, the induced fit that is necessary for catalysis and closing of the active-site cleft appears to be confined to the small lobe, as in the absence of the peptide the conformation of the large lobe, including the peptide-docking surface, does not change. Three specific components contribute to the closing of the cleft: rotation of the small lobe; movement of the C-terminal tail; and closing of the so-called glycine-rich loop. There is no induced fit in the large lobe to accommodate the peptide and the closing of the cleft. A portion of the C-terminal tail, residues 315-334, serves as a gate for the entry or exit of the nucleotide into the hydrophobic active-site cleft. 相似文献