共查询到19条相似文献,搜索用时 100 毫秒
1.
2.
一种基于改进CP网络与HMM相结合的混合音素识别方法 总被引:2,自引:0,他引:2
提出了一种基于改进对偶传播(CP)神经网络与隐驰尔可夫模型(HMM)相结合的混合音素识别方法.这一方法的特点是用一个具有有指导学习矢量量化(LVQ)和动态节点分配等特性的改进的CP网络生成离散HMM音素识别系统中的码书。因此,用这一方法构造的混合音素识别系统中的码书实际上是一个由有指导LVQ算法训练的具有很强分类能力的高性能分类器,这就意味着在用HMM对语音信号进行建模之前,由码书产生的观测序列中 相似文献
3.
4.
基于ANN/HMM的中国手语识别系统 总被引:4,自引:1,他引:4
手语是聋哑人使用的语言。它是由手形动作辅之以表倩姿势为符号构成的比较稳定的表达系统,是一种靠动作/视觉交际的特殊的语言。一方面,手语识别可以作为健全人与聋哑人之间的翻译,为聋哑人提供更好的服务;另一方面,作为人体语言理解的一部分,手语识别可作为人机交互的一种手段。该文实现了基于ANN/HMM的手语识别系统,采用ANN方法建立了关于手形、位置、方向的特征映射器,并在建立手形特征映射器的过程中,给出了多特征多分类器融合算法。实验证明,基于ANN/HMM的手语识别系统是可行及实用的。 相似文献
5.
6.
提出一种单幅图像中的人体检测方法.该方法用隐马尔可夫模型表示人体,根据给定的人体结构序列估计产生该序列的图像区域,从而将人体检测问题转化为隐马尔可夫解码问题求解.首先对图像进行Mean-Shift分割,并根据颜色信息搜索出属于躯干的区域,然后将明暗度、颜色及边缘3种底层特征相结合,估计特征匹配概率并由此获得四肢部分的候选区域.最后估计候选区域的连接概率并利用隐马尔可夫解码算法找出最优的人体配置区域.实验结果表明,该方法对于复杂背景中具有不同姿态的人体图像可得到较满意的检测结果.和其它检测方法相比,该方法并非单纯地给出矩形近似的人体各个部分,同时还获得较完整分割的人体图像.尤其对于图像分辨率较低、图像中的人体较小且存在运动模糊的情况,该方法能够获得较好的检测结果. 相似文献
7.
提出了基于奇异值特征和隐马尔可夫模型(HMM)的人脸检测方法,首先提出了基于奇异值特征和隐马尔可夫模型的正面端正人脸检测方法;然后将该算法扩展到检测任意旋转角度的人脸,其中正向端正人脸检测算法是通过隐马尔可夫模型来识别人脸/非人脸的奇异值特征,从而达到人脸检测的目的;扩展算法首无计算当前位置子图象窗口的奇异值特征向量,然后利用识别各个旋转角度人脸的HMM模型对之进行分类,以得到该子图象窗口的旋转角度,再经过旋正,重新再与识别正面端正人脸的HMM模型对, 此确定该子图象窗口是否为人脸,通过对一个由51幅集体照片组成的图象集进行测试,其中,正面端正人脸检测率为85.1%,而任意旋转角度的人脸检测率只有72.2%。 相似文献
8.
传统的HOG算法针对整幅图像进行行人特征提取,大量的非人窗口计算必然降低检测的准确率和效率。为此,提出一种基于OTSU分割和HOG特征的行人检测与跟踪方法。利用OTSU算法以最佳阈值分割图像,在分割区域的基础上进行Canny边缘检测,通过边缘的对称性计算确定行人候选区,继而采用经PCA方法降维后的HOG特征和隐马尔可夫模型对行人候选区进行检测验证。最后,以确定的行人区域为跟踪窗口,利用CamShift算法跟踪行人。多组实验结果证明,本文方法的行人检测效率和精度均有所提高,跟踪性能稳定、可靠。 相似文献
9.
通过人走路的姿势实现对个人身份的远距离识别和认证是当前生物特征识别研究领域的一个研究热点。算法利用步态轮廓图像边界到重心的距离矢量对步态轮廓图像进行人体运动的静态形状描述,采用连续隐马尔可夫模型对人体运动时从一个动作到另一个动作的过渡进行动态描述。算法在CMU数据库上面进行实验取得了较高的正确识别率。 相似文献
10.
提出一种利用隐马尔可夫模型建立目标特征匹配库来识别图像中局部遮挡目标的新方法。该方法首先通过SIFT算法提取目标SIFT特征,然后采用隐马尔可夫模型对目标所有的SIFT特征进行训练,得到目标SIFT特征对应的模型输出概率范围,将该概率范围作为目标特征匹配库。在对图像中的目标进行识别时,利用目标特征匹配库可以把目标特征从图像所有特征中识别出来,即使目标遮挡比例为60%时,该方法仍能识别出目标。实验结果表明,新方法可以精准地识别出图像中被遮挡目标,能够很好地解决遮挡情况下的目标识别问题。与现有局部遮挡目标识别算法相比,新方法所取得的目标识别率均有所提高。 相似文献
11.
12.
This article presents a cross-lingual study for Hungarian and Finnish about the segmentation of continuous speech on word
and phrasal level by examination of supra-segmental parameters. A word level segmentationer has been developed which can indicate
the word boundaries with acceptable precision for both languages. The ultimate aim is to increase the robustness of speech
recognition on the language modelling level by the detection of word and phrase boundaries, and thus we can significantly
decrease the searching space during the decoding process. Searching space reduction is highly important in the case of agglutinative
languages.
In Hungarian and in Finnish, if stress is present, this is always on the first syllable of the word stressed. Thus if stressed
syllables can be detected, these must be at the beginning of the word. We have developed different algorithms based either
on a rule-based or a data-driven approach. The rule-based algorithms and HMM-based methods are compared. The best results
were obtained by data-driven algorithms using the time series of fundamental frequency and energy together. Syllable length
was found to be much less effective, hence was discarded. By use of supra-segmental features, word boundaries can be marked
with high accuracy, even if we are unable to find all of them. The method we evaluated is easily adaptable to other fixed-stress
languages. To investigate this we adapted our data-driven method to the Finnish language and obtained similar results. 相似文献
13.
14.
基于隐马尔可夫模型的入侵检测系统 总被引:4,自引:1,他引:4
首先介绍了基于隐马尔可夫模型(HMM)的入侵检测系统(IDS)框架,然后建立了一个计算机系统运行状况的隐马尔可夫模型,最后通过实验论述了该系统的工作过程。通过仅仅考虑基于攻击域知识的特权流事件来缩短建模时间并提高性能,从而使系统更加高效。实验表明,用这种方法建模的系统在不影响检测率的情况下,比传统的用所有数据建模大大地节省了模型训练的时间,降低了误报率。因此,适合用于在计算机系统上进行实时检测。 相似文献
15.
16.
17.
从传统网络到物联网,分布式拒绝服务攻击一直是网络安全的隐患。为提高分布式拒绝服务攻击的检测率,提出基于概率图模型与深度神经网络的DDoS攻击检测方案。该检测方案由数据预处理阶段和攻击检测阶段组成,在数据预处理阶段,研究了正常数据包与攻击包的区别,分别从TCP、UDP以及IP数据包包头信息提取出较高维的统计特征,根据随机森林计算的特征重要性因子,保留了前22个特征用于流量检测。22个统计特征通过概率图模型的隐马尔科夫算法进行聚类,然后将聚类结果通过检测阶段的深度神经网络对网络数据进行进一步的检测。在CICDoS数据集上进行验证性实验,结果表明,该检测方法的准确率最高可达99.35%,最低检测误报率和漏警率分别可达0.51%和0.12%。 相似文献
18.
生物信息学中的智能模型 总被引:1,自引:1,他引:1
“生物信息学”是一门交叉学科,包含生物信息的获取、处理、存储、分发和解释等,它综合运用数学、信息科学和生物学的各种工具,阐明和理解大量数据所包含的生物学意义。文章对“生物信息学”的进展进行评述,从“人工智能”的观点,研究生物信息学中用到的模型和方法;并从计算机的角度分析了生物信息学存在问题和发展方向。 相似文献
19.
对人行为的感知和预推理是家庭智能空间技术的关键环节。文中提出一种基于隐马尔可夫模型( HMM)的人轨迹分析方法。该方法首先将平面空间离散化为“瓷砖格”,离线对各预设轨迹建立HMM模型。然后针对在线分析,提出一种类似滑动窗口的轨迹分割方案,该方案能实时有效地分割轨迹段,并适时激发轨迹匹配进程。最后智能空间依据匹配结果做出轨迹预测。实验表明,文中方法能有效预测人的轨迹,且满足实时性要求,有助于智能空间更好进行决策。 相似文献