首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
针对公共环境中异常声音的检测与识别存在的强噪声干扰及检测效率低的问题,提出基于参数自适应匹配跟踪的声信号识别算法.基于粒子和种群的进化率改进粒子群参数的自适应设置并优化稀疏分解目标函数;基于自适应粒子群算法的连续集搜索特性建立连续超完备Gabor原子集,以提高最匹配优原子与声信号的匹配度并加速原子的匹配搜索;使用SVM分类器实现公共环境异常声信号的复合特征识别.实验结果表明,与已有算法相比,该算法的公共环境异常声信号的识别率最优,且对不同背景噪声具有较好的识别鲁棒性.  相似文献   

2.
基于MP算法的语音信号稀疏分解   总被引:3,自引:1,他引:3       下载免费PDF全文
语音信号稀疏分解是一种新的语音信号分解方法,可以将语音信号分解为很简洁的近似表达形式。在语音信号稀疏分解的基础上,可应用于语音处理的多个方面,如语音压缩、语音去噪和语音识别等。研究利用Matching Pursuit(MP)算法实现语音信号的稀疏分解,实验结果表明基于MP算法的语音信号稀疏分解具有较好的重建精度和较高的稀疏度。  相似文献   

3.
人工鱼群算法(AFSA)是一种新的智能优化算法,具有鲁棒性强、全局收敛性好,及对初值的不敏感性等特点。将人工鱼群算法运用到信号的稀疏分解中,可快速寻找匹配追踪(MP)过程中每一步分解的最佳原子。此方法提高了信号稀疏分解的速度,算法的有效性为实验结果所证实。  相似文献   

4.
基于遗传算法(GA)的信号稀疏分解算法运算量较大。为解决该问题,提出一种基于 GA 的心电信号匹配追踪改进算法。结合心电信号的特征,根据信号特征波形建立窗函数,将信号分为能量集中和稀疏部分,分别采用不同的算法流程和参数。实验结果表明,该改进算法的运算量较原算法降低了1/3,能提高心电信号稀疏分解的运算速度和压缩处理性能。  相似文献   

5.
图像稀疏分解是图像压缩处理的一种有效的重要环节,但该方法在实现上存在原子匹配收敛与运算耗时的难题.针对基于匹配追踪的稀疏分解,采用一种新的各向异性原子来构造冗余字典,并利用原子能量中间支撑部分来估计原子与待处理图像的内积,从而实现图像的快速稀疏分解.图像分解与重建的结果表明,提出的方法在重建图像质量基本不变的情况下,具有图像稀疏分解表达好,稀疏分解的速度提高1倍.  相似文献   

6.
对Picker子渡进行了改进,增加了相位参数和尺度参数。相位参数用来控制原子的相位变化,而尺度参数用来控制原子的衰减速度变化。实验结果表明,用这种改进的RAcker子波作为原子库,对实际采集到的地震信号进行稀疏分解,分解后的残差信号的MSE(Mean Square Error)要比采用一般的Picker子波作为原子库降低了近46%。  相似文献   

7.
李钱钱  曹国 《计算机工程》2013,(11):240-244
针对复杂背景下的图像分类问题,结合非负稀疏编码和局部保持投影算法,提出一种拉普拉斯正则化非负稀疏编码算法。相比于已有的稀疏编码算法,该算法不仅能更好地模拟哺乳动物初级视觉系统主视皮层V1区简单细胞感受野的行为,同时也可使相似的特征经过编码后仍然相似,从而保证特征度量的一致性。将该算法与空间金字塔匹配模型相结合应用于图像分类,在多个图像数据库上的实验结果表明,该算法具有较高的分类精度。  相似文献   

8.
Tikhonov正则化多分类支持向量机是一种将多分类问题简化为单个优化问题的新型支持向量机.由于Tikhonov正则化多分类支持向量机利用全部类别数据样本构建核函数矩阵,因此不适合大规模数据集的模式分类问题,鉴于该原因,一种稀疏Tikhonov正则化多分类支持量机被建立,其训练算法首先构建样本重要性评价标准,在标准下通过迭代学习获取约简集,最后利用约简集构建核函数矩阵并训练支持向量机.仿真实验结果表明稀疏Tikhonov正则化多分类支持向量机在训练速度和稀疏性方面具有很大的优越性.  相似文献   

9.
为提高图像分类的准确率,提出一种非负弹性网稀疏编码算法。利用非负稀疏编码算法和弹性网模型,在稀疏编码优化模型的目标函数中引入l_2范数正则项,增加编码系数的非负约束,并将该算法与空间金字塔模型相结合应用于图像分类。实验结果表明,与传统的稀疏编码算法相比,该算法不仅能提高编码的判别性与有效性,而且可使相似的特征描述符编码后仍然相似,增强编码的稳定性,具有较高的分类准确度。  相似文献   

10.
针对高光谱数据维数高,波段间冗余信息大的问题,提出一种基于同质性降维和组合匹配追踪算法的高光谱图像分类方法。该方法首先利用均值漂移算法对高光谱图像进行分割得到同质性图像块,对同质性的图像块进行流行学习得到降维映射函数,然后由降维后的高光谱数据训练稀疏最小二乘支持向量机分类模型,为避免正交匹配追踪稀疏重构算法迭代次数多的缺点,提出一种基于组合匹配追踪的稀疏重构求解方法。通过高光谱数据的分类结果可以得出,该方法有效提高了高光谱图像的分类精度。  相似文献   

11.
支持向量机分类器遥感图像分类研究   总被引:1,自引:0,他引:1       下载免费PDF全文
SVM分类器核函数的选择以及参数的设置直接影响系统的泛化能力和运行速度。引入交叉验证技术和栅格搜索技术,对径向基核、多项式核和Sigmoid核函数应用于图像多类别分类的性能进行理论推导、测试及分析,求得三种核函数应用于SVM分类器的性能,并证明了栅格搜索寻找最优参数的有效性。最后通过对TM 6波段BSQ格式遥感图像进行分类对比证明了SVM分类器核函数用于TM图像分类的可行性及高效性。  相似文献   

12.
孙蕾 《计算机工程》2008,34(3):27-28,5
支持向量机(SVM)方法是利用最优分类面(线)将两类样本在特征空间或输入空间中无错误地分开,而且要使两类的分类空隙最大。因此标准的SVM方法需要求解二次规划问题,计算量很大。该文以一个医学决策支持系统为应用背景,介绍一种解决该问题的新方法。在UCI数据集和所开发的决策支持系统上的应用表明,该算法简便可行,具有更高的精度和更快的速度。  相似文献   

13.
研究基于Matching Pursuit(MP)方法实现的语音信号稀疏分解问题,通过对语音信号稀疏分解中使用的过完备原子库结构特性的分析,提出了一种改进的信号稀疏分解算法。该算法针对语音信号的特点,以FFT算法实现的稀疏分解为基础缩小了原子的搜索范围,从而不仅进一步提高分解速度,还能以更稀疏的形式表示语音信号。算法的有效性为实验结果所证实。  相似文献   

14.
利用信息向量机(IVM)算法对来自脑皮层的少量运动神经元激发率进行分类,识别出神经状态,用该神经状态指导神经元激发率的译码。将IVM算法与支持向量机算法、相关向量机算法进行实验比较,结果证明,IVM算法的神经活动分类和译码性能最优,运行时间最短。  相似文献   

15.
支持向量机针对大规模数据集学习问题的处理需要耗费很长的时间,提出一种数据预处理的方法对学习样本进行聚 类,以此为基础得到一种模糊支持向量机.计算机仿真结果表明提出的SVM算法与传统的SVM训练算法相比,在不降低分 类精度的情况下,大大缩短了支持向量机的学习训练时间.  相似文献   

16.
提出一种新的基于Matching Pursuit(MP)的语音信号稀疏分解算法。在对语音信号稀疏分解中使用的过完备原子库进行划分的基础上,将内积运算转换成互相关运算,并结合语音信号与原子是实的特性,利用Fast Hartley Transform(FHT)快速实现互相关运算。从而比利用FFT实现基于MP的信号稀疏分解节省一半的存储空间,提高分解速度约24.8%。此外,应用改进后的算法对语音信号进行特征提取,并结合语音信号的美尔(Mel)频率倒谱参数一起作为该信号的特征向量,通过Support Vector Machine(SVM)进行识别,最后通过实验验证了方法的有效性。  相似文献   

17.
信号的稀疏表示在信号处理的许多方面有着重要的应用,但稀疏分解计算量十分巨大,难以产业化应用。利用果蝇优化算法实现快速寻找匹配追踪(MP)过程每一步的最优原子,大大提高了语音信号稀疏分解的速度,算法的有效性为实验结果所证实。  相似文献   

18.
基于块导向的字典的匹配追逐算法广泛应用于图像处理中。本文在块导向字典的基础上,提出交迭字典。块导向字典可以看作是块导向变换的概括,交迭字典可以看作是由临界采样滤波器组构成的。针对匹配追逐算法搜索最佳向量过程耗时的问题,提出了基于最佳路径组合搜索策略的改进算法,该方法利用树状图从所有可能的向量组合中,选择逼近误差最小的向量组合作为最佳字典向量。仿真结果显示,该算法的估计误差明显减少,而且找到最佳途径的可能性增加。  相似文献   

19.
基于流形学习和SVM的Web文档分类算法   总被引:3,自引:4,他引:3       下载免费PDF全文
王自强  钱旭 《计算机工程》2009,35(15):38-40
为解决Web文档分类问题,提出一种基于流形学习和SVM的Web文档分类算法。该算法利用流形学习算法LPP对训练集中的高维Web文档空间进行非线性降维,从中找出隐藏在高维观测数据中有意义的低维结构,在降维后的低维特征空间中利用乘性更新规则的优化SVM进行分类预测。实验结果表明该算法以较少的运行时间获得更高的分类准确率。  相似文献   

20.
针对传统稀疏编码图像分类算法提取单一类型特征,忽略图像的空间结构信息,特征编码时无法充分利用特征拓扑结构信息的问题,提出了基于多尺度特征融合Hessian稀疏编码的图像分类算法(HSC)。首先,对图像进行空间金字塔多尺度划分;其次,在各个子空间层将方向梯度直方图(HOG)和尺度不变特征转换(SIFT)进行有效的融合;然后,为了充分利用特征的拓扑结构信息,在传统稀疏编码目标函数中引入二阶Hessian能量函数作为正则项;最后,利用支持向量机(SVM)进行分类。在Scene15数据集上的实验结果表明,HSC的准确率比局部约束线性编码(LLC)高了3~5个百分点,比支持区别性字典学习(SDDL)等对比方法高了1~3个百分点;在Caltech101数据集上的耗时实验结果表明,HSC的用时比多核学习稀疏编码(MKLSC)少40%左右。所提HSC可以有效提高图像分类准确率,算法的效率也优于对比算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号