首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于鄂东、沁南、黔西-滇东及准南地区232层次煤层气井原位地应力实测数据,参照Hoek-Brown分析方法,系统分析了煤层气储层宏观地应力分布规律,回归建立了不同应力参数随深度的变化曲线,研究结果表明:我国煤储层表现为中-高应力区,应力场类型呈非均匀分布,σ_Hσ_vσ_h型和σ_vσ_Hσ_h型为主(94%),σ_Hσ_hσ_v型较少见且集中在浅部;煤储层侧压系数k均小于Hoek-Brown平均值,且88%实测数据较国内平均线偏低;σ_H/σ_v和k值随埋深变化均可用双曲线形态表征,整体表现为"浅部离散,深部收敛";水平主应力差与埋深具有一定的线性正相关性,而σ_H/σ_h变化不大,主要集中在1.015~1.915,平均为1.47。研究结果可为深部煤储层应力状态的判断、岩体参数的选取提供参考。  相似文献   

2.
为研究平顶山东北部区域地应力对煤储层压力、渗透率的控制作用,依据煤层气井水力压裂和试井工程试验资料,采取水力致裂手段获取地应力的方法,研究了平顶山东北部矿区地应力发育特征,分析了地应力对煤储层压力、渗透率的控制作用。研究表明现今地应力场总体上以水平应力为主,属于典型的构造应力场类型,且总体应力场特征为高倾角断层或裂隙发育|最大水平主应力、最小水平主应力、侧压系数和侧压比均随埋深的增加而线性增加|埋深约在682m时,地应力类型发生转换,地应力类型在垂向的转变原因主要受平顶山矿区多期构造运动所引起的地应力叠加的结果|煤储层压力随着最小水平主应力、垂向应力、有效应力和主应力差的增加呈现增大趋势|渗透率随着主应力差、最大水平有效主应力和最小水平有效主应力关系以负指数形式呈现降低趋势。研究认为构造应力集中区域、低渗透率分布区域是煤层气压裂等储层改造和井下煤层增透卸压工程重点布置区域。  相似文献   

3.
基于潞安矿区19组注入压降试井数据,系统分析了该区现代地应力平面及垂向分布特征,探讨了现代地应力对煤储层渗透率的控制作用。研究结果表明:潞安矿区3号煤储层整体为中-低应力区,应力场类型在垂向上呈非均匀分布,埋深400~610 m区域为走滑断层应力场(σHvh);埋深610~800 m区域为正断层应力场(σvHh)。潞安地区现代地应力场测压系数与埋深关系的关系式为:131.67/H+0.165 9≤K≤544.72/H+0.238 0,整体表现为"浅部离散,深部收敛"的特征。煤储层渗透率与水平主应力、水平主应力差和有效应力密切相关。煤储层渗透率与最大/最小水平主应力及其应力梯度存有较好的幂函数关系,煤储层渗透率都随最大、最小水平主应力及其应力梯度的增加而快速减小。水平主应力差通过控制煤储层裂隙开合来影响渗透率,当矿区应力场最大主应力方向与煤储层优势裂隙组发育方向一致时,煤储层中的裂隙受拉张作用,煤储层渗透率提高;当矿区...  相似文献   

4.
中国煤矿矿区地应力场特征与断层活动性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
李鹏  苗胜军 《煤炭学报》2016,41(Z2):319-329
地应力场研究是岩石力学与采矿工程中的一项重要工作,随着煤矿向深部开采,地应力的作用更加凸显。通过回归分析优化处理后的中国煤矿矿区219组实测地应力数据,对中国煤矿矿区地应力场分布特征及其与断层活动性的关系有一些新的认识。目前中国煤矿矿区的地应力场类型主要以σ_Hσ_hσ_v型和σ_Hσ_vσ_h型为主,但σ_Hσ_vσ_h型居多;研究区以高地应力值矿区居多,中等应力和超高应力值矿区也占有一定比例,低应力值矿区最少;最大水平主应力、最小水平主应力与垂直主应力均随深度呈几乎线性增长关系,水平构造应力处于主导地位;随着埋深的增加,3个侧压系数呈现减小的趋势,KH向1.31趋近,Kh向0.74趋近,Kav向1.03趋近;水平差应力值分布离散,其大小范围为0.85~19.51 MPa,平均为8.80 MPa;最大与最小水平主应力的比值主要集中在1.50~2.00;在当前的应力状态下,摩擦因数取0.6,1.0时,研究区断层不易出现滑动失稳现象,在整体评价研究区断层稳定性时,断层滑动失稳标准取摩擦因数为0.6比较合适。  相似文献   

5.
为系统研究柳林地区煤储层地应力场展布及其对裂隙的控制作用,分析不同埋深煤层与地应力的关系,采用水力致裂法获取了地应力资料。通过统计分析,建立了主采煤层地应力与煤层埋藏深度之间的相关关系模型,分析了露头节理、煤层割理与现今地应力方向的耦合关系。研究表明:柳林地区最大水平主应力σmax为7.33~30.83 MPa,平均19.41 MPa,最小水平主应力σmin为6.50~24.00 MPa,平均13.12 MPa,主应力随埋深增大而线性增高。在埋深400~700 m,垂直应力σv≈σmax≈σmin,地层呈现准静水压力场特点;在700~850 m,σmaxσvσmin,为大地动力场型,水平方向主应力占主导地位;在850~1 100 m,σvσmaxσmin,为大地静力场型,仍未进入明显压缩带。水力压裂地应力检测表明现今主应力方向与煤层裂隙方向相近,以NNE向为主,地应力方向在割理形成后未发生明显改变。  相似文献   

6.
陈世达  汤达祯  陶树  赵俊龙  李勇  刘文卿 《煤炭学报》2016,41(12):3069-3075
基于沁南—郑庄区块35层次煤层气井注入/压降及地应力实测数据,系统分析了郑庄区块地应力垂向变化规律,并在此基础上探讨了煤储层渗透性、含气性、气水产出垂向差异性演化,揭示了郑庄地区深部煤层气界限。郑庄区块地应力状态在垂向上发生转换:575 m以浅,σHσvσh,表现为大地动力场,现今地应力状态为压缩状态;575 m~675 m,水平主应力较浅部有所降低(σH≈σvσh),表现为准静水压力场,现今地应力状态为过渡状态(由压缩状态过渡为拉张状态);675~825 m以深,σvσHσh,表现为大地静力场型,现今地应力状态为拉张状态;825 m以深,σHσvσh,现今地应力状态为压缩状态。煤储层试井渗透率随埋深的变化与地应力场状态的转变基本一致,其实质是地应力作用下煤体孔隙结构的变形与破坏;含气量与埋深之间存在一个"临界深度"范围(800~1 000 m),超过此埋深范围之后煤层含气量随埋深增大而趋于降低。整体来说,825m以深煤层气资源处于地应力转换状态和(或)含气量"临界深度"之下,其赋存和开发地质条件发生转换,气体采收率相对较低,属于深部煤层气范畴。该埋深(825 m)以下煤层气开发将面临"低渗透率、低含气量、高地应力"的挑战。  相似文献   

7.
地应力是煤储层压裂改造的关键控制因素。基于电成像测井和水力压裂数据,结合Abaqus软件模拟,查明了研究区深部煤储层地应力空间展布规律,探讨了地应力对压裂裂缝延展的影响。结果表明,临兴地区最大水平主应力方向近似呈EW向。地应力的垂向分布具有明显分带性,存在1 200 m和2 000 m两个临界转换深度。1 200 m以浅,地应力以垂直主应力为主;埋深介于1 200~2 000 m时,水平主应力占据主导;当埋深超过2 000 m时,地应力再次转换为以垂直主应力为主。研究区深部煤储层地应力主要表现为最大水平主应力>垂直应力>最小水平主应力(σhmaxVhmin)。地应力的平面分布受埋深和构造2方面控制,埋深导致地应力整体呈南高北低、西高东低的特征;褶皱和断层使得研究区北部地应力呈条带状分布,背斜核部水平地应力较大,向斜核部及断层发育区水平地应力较小。研究区地应力组合特征决定了煤储层压裂裂缝以垂直裂缝为主,局部容易形成一些复杂缝。在天然裂隙存在的情况下,水平主应力差小于3 MPa时,压裂裂缝沿天...  相似文献   

8.
采用水压致裂测量地应力方法取得了黄陇侏罗纪煤田37个煤层地应力数据,通过数据统计和相关模型分析,研究了黄陇侏罗纪煤田现代应力场特征,地应力与煤储层压力耦合关系及其对煤层气开发和煤矿安全生产的意义。研究结果表明:1)研究区最大、最小主应力和剪切应力随着埋深增大而增大,最大主应力转换深度大约为800 m。侧压系数具有浅部分散,深部聚拢的特征。从600 m开始应力场类型从拉伸状态的正断层应力组合机制向挤压状态的走滑断层应力组合机制转化,至1 200 m基本趋于静压力场。2)研究区有效应力偏低,煤储层以欠压储层为主,不利于煤层气富集,含气饱和度为6.52%~30.6%,临储比较低,不利于煤层气排采。随着最小水平主应力增大煤储层渗透率呈负指数减小,同时应力的垂向转换影响了压裂过程中裂缝的发育形态。3)依据煤矿冲击地压实例,600 m以深地应力作用下的挤压应力场是研究区煤矿冲击地压灾害的根本控因,但对煤与瓦斯突出影响不明显。煤田地质勘探过程中应补充对煤岩层冲击性和地应力评价内容,从而避免在矿井建设过程中遇到冲击地压灾害而修改设计造成损失。  相似文献   

9.
《煤矿安全》2021,52(10):157-165
在全面收集研究区煤层及煤层气地质勘查资料及实验测试成果的基础上,采用定量化分析方法,系统分析煤层吸附能力、含气性、地应力、孔渗性等的变化规律,重点探讨影响该区煤层气赋存的主控因素及开发地质条件。研究表明:该区煤层含气量总体受埋深控制,西高东低;纵向上,随埋深增大,煤的变质程度增高;埋深小于1 000 m,压力的正效应起主导作用,含气量、含气饱和度、渗透率随埋深的增大而增高,孔隙度随埋深的增大而降低;埋深超过1 000 m,温度的负效应起主导作用,含气量、含气饱和度随埋深的增大而降低,孔隙度逐渐反弹,渗透率逐渐降低;二者过渡埋深范围为750~1 000 m;埋深小于750 m,以水平应力为主,为压缩型地应力场;埋深介于750~1 000 m之间,部分转换为以垂直应力为主,表现出拉张型地应力场,有利于裂隙发育,渗透性变好,渗透率随埋深增大而增高;埋深大于1 000 m,重新转换为压缩型地应力场,渗透率随埋深增加而大幅降低。  相似文献   

10.
以柿庄南区块112口煤层气井为研究对象,采用水力压裂法计算煤储层地应力,获取了研究区地应力及破裂压力展布特征,分别建立了破裂压力与水平主应力、有效应力之间的相关模型,揭示了该区块3号煤储层地应力与破裂压力之间的耦合关系,并剖析了地应力对破裂压力的影响。研究结果表明:柿庄南区块3号煤储层整体为中等至高应力区,地应力场类型在垂向上发生转换,埋深400~640 m区域以逆断层应力场型为主,640~810 m区域以走滑断层应力场型为主,810 m以深区域以正断层应力场型为主;侧压系数一般为0.38~1.99,埋深600 m以浅区域,绝大多数大于1,埋深600~800 m区域,侧压系数为0.52~1.93,埋深800 m以深区域,侧压系数均小于1;该区块破裂压力为12.89~36.10 MPa,破裂压力梯度为1.47~6.09 MPa/hm,破裂压力与埋深呈现反“S”形变化,810 m以浅破裂压力离散性较大,整体与埋深呈现负相关,810 m以深破裂压力与埋深呈现正相关;该区块最大水平主应力、最小水平主应力及其各自应力梯度与煤储层破裂压力在一定程度上呈现正相关,但相关性不强;同一埋深条件下,破裂压...  相似文献   

11.
煤层气井水力压裂有效消突边界物理模型   总被引:1,自引:0,他引:1       下载免费PDF全文
针对低渗煤储层煤层气井水力压裂裂缝扩展范围和消突边界确定问题,以潞安矿区煤层气井为例,采用微地震裂缝实时监测数据、有限元地应力模拟技术及井下瓦斯抽采参数,对煤层气井水力压裂范围、裂缝几何形态、压裂前后地应力分布进行研究,建立了压裂裂缝扩展和消突边界物理模型,划分了菱形井网消突范围。结果表明:研究区裂缝类型属于PKN型,压裂区呈近似椭圆形,主裂缝沿最大水平主应力方向延伸,区内划分出铺砂区、最终解吸区、裂缝区、渗透区、气涌区等5边界;压裂区四周应力沿σ_H,σ_h分别升高19%和7%,区内下降15.5%和9.5%,地应力模拟结果与压裂边界物理模型相吻合;在排采达标情况下,有效消突边界小于压裂边界,与支撑剂铺置边界一致,有效消突边界之外存在突出危险区,菱形井网采用200 m×125 m布置方式更有利于井下对应区瓦斯防治。  相似文献   

12.
本文提出一种水压致裂和应力解除地应力测试之间数据转换和有效性验证的方法,统计得到了淮南矿区500~1 050 m埋深范围内84组有效地应力测试数据,绘制地应力分布矢量图,结合淮南矿区地质构造特征和历次构造运动,回归分析了淮南矿区地应力场分布特征及其演化过程,得出如下结论:淮南矿区地应力场类型整体为构造应力场,应力场量级以高应力场为主,局部属于超高应力场;随着埋深的增加,最大水平主应力、最小水平主应力和垂直主应力量值逐渐增大,水平应力增加幅度小于垂直应力,应力场类型表现出由构造应力场向自重应力转变的趋势;淮南矿区多数测点最大水平主应力方向为NEE-WE向,局部为NW-SE向,区域构造主应力场方向大部分继承了喜马拉雅运动期的NEE-EW向,局部保留了燕山运动中期的NWW-SEE向;新生代松散层在煤系地层堆积,决定了垂直应力的大小。  相似文献   

13.
现今地应力状态(大小和方向)和煤储层渗透率是影响煤层气勘探开发的重要地质因素.基于震源机制解反演、水力压裂等方法确定了滇东-黔西地区现今地应力状态,揭示了二叠系煤层地应力大小垂向变化规律,并在此基础上剖析了滇东-黔西地区二叠系煤储层渗透率发育特征及其控制因素.研究结果表明:滇东-黔西地区水平最大主应力(SH,max)方...  相似文献   

14.
我国滇东恩洪区块二叠系煤层气资源丰富,该区块是今后煤层气开发的重点区域之一,地应力分布对于储层压裂改造等煤层气开发工程具有重要影响。在注入/压降试井方法实测地应力约束下,基于Anderson修正模型对恩洪区块地应力分布进行预测,总体上,水平最大主应力S_(H,max)、水平最小主应力S_(h,min)和垂向主应力S_v在不同深度段呈现不同应力机制类型,由浅至深依次表现为逆断型、走滑型和正断-走滑型。研究结果表明:在该区块二叠系宣威组内,地应力遵循S_(H,max)≥S_vS_(h,min)的关系,呈现正断-走滑型应力机制,而宣威组煤层地应力数值较其顶底板小,表现为正断型应力机制;岩石类型与埋藏深度影响地应力分布,水平主应力随埋藏深度的增加呈线性增大,杨氏模量小的煤岩,其水平地应力值最低;滇东恩洪区块深部煤层气临界深度约为700 m;研究结果可以为滇东恩洪区块煤层气开发提供新的地质参考。  相似文献   

15.
基于流-固-热耦合的深部煤层气抽采数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
范超军  李胜  罗明坤  杨振  张浩浩  王硕 《煤炭学报》2016,41(12):3076-3085
为了提高深部煤储层产气规律预测准确性、减小气井设计误差,分析了深部煤储层特征参数随埋深的变化规律,针对目前煤层气研究忽略了温度、地下水等因素问题,基于已建立的深部煤层气抽采流-固-热耦合模型,进行深部煤层气抽采数值模拟,分析不同地应力、初始渗透率、储层压力和温度等深部特征参数以及不同埋深条件下煤层气抽采的储层参数和产气演化规律。结果表明:渗透率变化为地应力增加、温度降低和煤层气解吸引起的煤基质收缩效应与储层压力降低引起的煤基质膨胀效应的综合竞争结果;随着煤层气和水被采出,储层温度降低和煤层气解吸占主导,储层渗透率升高;地应力对深部储层渗透率比例的变化起着主要作用,初始渗透率对产气速率起着控制作用;当煤层埋深小于临界埋深时,产气量随埋深逐渐增加,达到临界埋深后,产气量随埋深逐渐降低;低渗透率是制约埋深超千米的气井高产的关键。  相似文献   

16.
《煤炭技术》2021,40(3):52-53
现今地应力场特征研究对煤层气开发有重大影响。采用水力压裂测量地应力的方法,对沁水盆地南部樊庄区块3#煤层地应力分布进行了测试。结果表明:樊庄区块最大水平主应力为6.42~41.86 MPa,最小水平主应力为3.30~26.40 MPa,垂直应力为9.14~30.64 MPa。煤储层现今地应力随深度的增加呈线性增大规律。现今地应力作用方向主要以NEE-SWW方向为特征。基于最小水平主应力值和煤层埋藏深度以及应力状态,樊庄区块煤储层可划分为低应力分布区和中应力分布区。  相似文献   

17.
矿井地应力研究对于煤矿围岩控制和动力灾害防治具有重要的意义。基于矿区构造应力场演化特征和地应力现场实测,分析褶曲构造型矿区的地应力场类型及量级,研究褶曲构造对地应力的影响。采用多元线性回归分析方法,反演褶曲构造型矿区的地应力场分布情况。通过分析褶曲构造型矿区地应力与矿井灾害的关系,提出地应力测量及反演在矿井围岩稳定性设计和动力灾害防治中的应用方法。研究结果表明,褶曲构造型矿区地应力场分布受地质构造影响显著,属于σ_Hσ_hσ_v型水平主控应力场;褶曲轴部应力值较大,最大主应力方向与轴部走向垂直,翼部会发生一定的偏转。根据地应力场反演结果可知,地应力集中程度与褶曲产状密切相关,褶曲变异程度越大,其附近区域应力集中程度越明显;褶曲构造型矿区地应力与巷道稳定性、冲击地压和煤与瓦斯突出等动力灾害有着紧密的联系,通过地应力测量及反演可以有效指导矿井进行巷道优化布置和灾害防治。  相似文献   

18.
新疆准噶尔盆地南缘乌鲁木齐河东矿区处于勘探开发早期阶段,为了分析该区煤层渗透率分布差异性,以研究区煤储层试井渗透率为基础数据,分析大倾角煤层中渗透率分布特征及其影响因素。结果表明:随着煤层埋深的增大储层压力和地应力均逐渐增大,但是地应力增大的幅度大于储层压力导致储层有效应力逐渐增大。随着储层有效应力的逐渐增大,渗透率呈现出缓慢下降的趋势。以埋深500m为分界点,渗透率变化规律大致可以分为快速下降区和缓慢下降区,且随着埋深逐渐增大渗透率应力敏感性逐渐降低。  相似文献   

19.
由于深部煤层(埋深大于1 000 m)埋藏深、渗透率较低、温度高、地应力高、储层力学性质复杂等特点,常规煤层气水力压裂技术开发深部煤层气具有一定的局限性。鉴于CO_2泡沫压裂液在煤层中滤失量小、黏度高、储层伤害低等优点,研究了CO_2泡沫压裂技术开采深部煤层气及其适用条件分析,可为下一步深部煤层气开发提供技术支撑。  相似文献   

20.
陈世达  汤达祯  陶树 《煤炭学报》2021,46(8):2466-2478
关于煤层气叠置成藏效应的研究通常注重煤系地层层序地层格架的时空配置,对于原位地应力制约下储层的"自封闭效应"关注不足,应力场垂向转换诱导的煤储层渗透性的非单调性变化及其对储层压力、含气性等成藏特征参数的调控作用常被忽视。系统分析了黔西地区煤储层地应力场的垂向分布规律及其构造控制效应,揭示了渗透率随埋深的非指数变化规律及其在沁水、鄂东等含煤盆地的普适性,探讨了储层压力、压力系数垂向差异性分布及其与地应力-渗透率的匹配关系。黔西地区煤储层水平主应力(200~1 300 m)是埋深和构造综合作用的结果,含煤向斜轴部是水平主应力最为集中的区域。根据应力梯度垂向演变规律可以将其划分为应力挤压区(200~500 m,水平构造应力主导)、应力释放区(500~750 m,垂直应力主导)、应力过渡区(750~1 000 m,近向斜轴部)和构造集中区(>1 000 m,向斜轴部低点部位,高应力区)。埋深中段的应力释放区有利于相对高渗储层的形成(平均0.2×10-15 m2),在此深度区间上下(200~500 m,平均0.06×10-15  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号