首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
将碳纤维(C)与聚丙烯(PP)、乙烯-乙酸乙烯共聚物(EVA)共混,制备了PP/EVA/C复合材料。研究了碳纤维用量以及偶联剂改性、酸刻蚀并偶联剂改性的碳纤维对PP/EVA复合材料力学性能、水接触角和断面微观形貌的影响。结果表明:碳纤维添加量为30份时,PP/EVA/C复合材料的力学性能较好;酸刻蚀并偶联剂改性的碳纤维(SSiC)增强效果优于单独偶联剂改性的碳纤维。与添加碳纤维30份的PP/EVA/C复合材料相比,PP/EVA/SSiC复合材料的拉伸强度、弯曲强度分别提高了6.26,7.20 MPa,但冲击强度略有降低。  相似文献   

2.
以尼龙66为基体材料,添加碳纤维、增韧剂、流动改性剂等相关功能助剂,通过双螺杆挤出机制备了碳纤维增强尼龙66复合材料,采用注塑工艺制备了碳纤维增强尼龙66复合材料的标准试样,研究了碳纤维及流动改性剂含量对复合材料力学性能和熔体流动性能的影响。结果表明,提升碳纤维含量可以大幅度提高碳纤维增强尼龙66复合材料的力学性能,当碳纤维质量分数为35%时,复合材料的拉伸强度达到251 MPa,比纯尼龙66树脂提高了210%,弯曲强度由纯树脂的72 MPa提高到358 MPa,提高了397%,缺口冲击强度提高了178%,达到22 kJ/m~2。通过加入流动改性剂可以提高碳纤维增强尼龙66复合材料的熔体流动速率(MFR),并且不影响复合材料的力学性能,当流动改性剂的质量分数为1%时,碳纤维质量分数为25%的复合材料的MFR达到16.1 g/(10 min),比未添加流动改性剂时提高了193%,碳纤维质量分数为35%的复合材料的MFR为15.5 g/(10 min),比未添加流动改性剂时提高了319%。  相似文献   

3.
为了改善超高分子量聚乙烯(PE-UHMW)的加工性能,提高其力学性能,以木粉和碳纤维为填料,制备了高填充量碳纤维增强PE-UHMW/木粉复合材料。研究了碳纤维含量对PE-UHMW/木粉复合材料弯曲性能、拉伸性能及动态热机械性能的影响。研究结果表明,加入碳纤维可提高PE-UHMW/木粉复合材料的弯曲强度及拉伸强度。拉伸强度和弯曲强度都随着碳纤维的含量的增加呈现出先增加后减小的趋势。当碳纤维质量分数为3%时,弯曲强度达到最大值,为25.2 MPa,比未加碳纤维时提高了46.5%。当碳纤维质量分数为2%时,弯曲强度达到最大值,为38.4 MPa,比未加碳纤维时提高了27.1%。随着碳纤维含量的增加,复合材料的储能模量显著提高。碳纤维的加入使复合材料的损耗因子峰值增大。  相似文献   

4.
《弹性体》2015,(2)
利用碳纤维增强氟橡胶,研究了碳纤维含量对氟橡胶力学性能的影响,偶联剂对碳纤维/氟橡胶复合材料性能的影响,确定碳纤维增强氟橡胶的最佳用量及制备复合材料的最佳硫化条件,通过红外光谱(IR)和扫描电镜(SEM)分析探讨碳纤维/氟橡胶橡胶复合材料的形貌和结构。结果表明,短切碳纤维与氟橡胶的最佳质量比为12∶100,偶联剂为3-氨丙基三乙氧基硅烷(KH500),其用量为2.5份。最佳硫化条件为:硫化时间为15min,硫化温度为170℃,硫化压力为10MPa。红外光谱表明,碳纤维与氟橡胶之间生成了C—Si—O化学键,提高了氟橡胶和碳纤维的相容性,扫描电镜(SEM)表明用偶联剂KH550处理过的碳纤维在橡胶中的排列整齐,无明显断面、孔隙,相界面之间结合得很好。  相似文献   

5.
采用熔融挤出法制备出无机颗粒(IP)增强聚酰胺6(PA6)复合材料,使用叠层模压法制备了IP/碳纤维(CF)共增强PA6复合材料(PA6/IP/CF)。利用场发射扫描电子显微镜、万能试验机等研究了IP的形貌和含量对复合材料性能的影响。结果表明,当滑石粉(TALC)的添加量达到10%(质量分数,下同)时,PA6/CF/TALC复合材料的各项力学性能达到最大值,弯曲强度为374.6 MPa、剪切强度为58.7 MPa、冲击强度为76.9 kJ/m~2;当玻璃微珠(GB)的添加量达到15%时,PA6/CF/GB复合材料的各项力学性能达到最大值,弯曲强度为404.4 MPa、剪切强度为66.7 MPa、冲击强度为86.5 kJ/m~2;GB相较于TALC对复合材料的增强效果更好,使复合材料的综合力学性能得到进一步提高。  相似文献   

6.
采用硅烷偶联剂KH-550和KH-570分别对纤维增强复合材料(FRP)废渣进行表面处理。制备了剑麻纤维/FRP废渣增强不饱和聚酯树脂复合材料。研究了FRP废渣的表面处理方式、FRP废渣含量和剑麻纤维含量对复合材料力学性能、吸水性和热性能等影响。结果表明,经过偶联剂处理的复合材料的力学性能和热稳定性均增强。当FRP废渣质量分数为30.0%,剑麻纤维质量分数为10.0%时,经KH-570处理复合材料的拉伸强度、弯曲强度和冲击强度分别提高22.8%,21.4%和19.2%。FRP废渣经过偶联剂处理后,复合材料的吸水性降低。  相似文献   

7.
由于硅橡胶具有较好的耐热性但力学性能比较差,本文用高性能的碳纤维作增强剂,硅橡胶(MVQ)作基相及偶联剂作为相容剂制备了碳纤维/硅橡胶复合材料。通过力学性能和热老化测试,确定碳纤维的用量。用偶联剂作相容剂研究了偶联剂对硅橡胶和碳纤维相容性影响;通过傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)分析了碳纤维和硅橡胶交联结构和相容性。结果显示,制备了碳纤维/硅橡胶复合材料的最佳配方为硅橡胶 100份,碳纤维 12份,KH-550 2.5份。碳纤维增强硅橡胶的最佳硫化条件为:温度 175℃,压力为10MPa,时间为30min。由扫描电镜和红外光谱分析,进一步论证了用KH-550处理的比没有处理及用Si69处理的碳纤维与硅橡胶的混合相容性好。  相似文献   

8.
碳纤维对C_f-HA/PMMA复合材料力学性能的影响   总被引:1,自引:0,他引:1  
采用原位合成和溶液共混相结合的方法,制备了短切碳纤维(Cf)增强纳米羟基磷灰石(hydroxyapatite,HA)/聚甲基丙烯酸甲酯[poly(methyl methacrylate),PMMA]生物复合材料(Cf-HA/PMMA).重点研究了短切碳纤维对Cf-HA/PMMA复合材料的微观结构和力学性能的影响.采用万能材料试验机测试了Cf-HA/PMMA复合材料的力学性能,使用扫描电子显微镜对材料微观形貌进行了测试和表征.结果表明:采用浓硝酸和二甲基亚砜处理后的碳纤维与PMMA基体的界面结合性得到有效改善,显著提高了Cf-HA/PMMA复合材料的力学性能;碳纤维和HA的质量分数分别为4%和8%,复合材料的弯曲强度、弯曲模量、拉伸强度和压缩强度均达到最佳值.  相似文献   

9.
采用原位聚合法制备了以三聚氰胺-脲甲醛为壁材,环氧E-51为芯材的微胶囊(MUF),并将其应用到碳纤维(CF)增强不饱和聚酯(UP)复合材料中,详细探讨了CF质量分数和MUF质量分数对碳纤维/不饱和聚酯(CF/UP)复合材料和微胶囊/碳纤维/不饱和聚酯(MUF/CF/UP)复合材料热稳定性、力学性能和自修复性能的影响。通过OM和SEM观察MUF的表面形貌,FTIR对MUF、CF/UP复合材料和MUF/CF/UP复合材料的化学结构进行表征,TGA、悬臂梁冲击仪和万能拉力试验机对复合材料的热稳定性、冲击性能、拉伸性能和自修复性能进行测试。结果表明,CF和MUF质量分数均为1%时,MUF/CF/UP复合材料的热稳定性较佳,力学性能及自修复性能较优;其拉伸强度为3.99 MPa,弹性模量为229.58 MPa,断裂伸长率为2.12%,冲击强度为86.75 k J/m~2,自修复效率为62.02%。  相似文献   

10.
采用不同浓度的酚酞型聚芳醚酮(PEK-C)溶液对碳纤维(CF)进行表面处理,并制备了碳纤维增强聚苯硫醚(PPS/CF)复合材料。结果表明:与去浆后CF(CF-A)相比,浓度0.50%的PEK-C溶液处理的CF表面O/C比提升约49.2%,且C—O键和C=O键占比明显提升。说明PEK-C溶液处理可以有效增加CF表面含氧官能团的数量,且在该条件下复合材料的界面性能和弯曲性能大幅提升,相较于未经PEK-C改性的PPS/CF复合材料,0.50%的PEK-C溶液改性后的PPS/CF复合材料层间剪切强度由23.81 MPa提高至38.45 MPa,弯曲强度由709 MPa提高至839 MPa。  相似文献   

11.
以碳纤维为增强体,用双螺杆挤出机共混制备了碳纤维增强聚甲醛复合材料,研究了碳纤维含量对复合材料的力学性能、热性能、熔体流动性能的影响。结果表明,碳纤维的加入大幅提高了复合材料的力学性能,改善了热稳定性能,但熔体流动速率减小;当碳纤维质量分数为25%时,复合材料的弯曲弹性模量、弯曲强度、拉伸强度、缺口冲击强度、断裂伸长率分别为19.8 GPa,187 MPa,153 MPa,16.2 kJ/m2,0.52%,综合力学性能最佳。  相似文献   

12.
采用短切碳纤维(CF)增强氟橡胶(FR),制备了短切CF/FR复合材料,考察了短切CF的用量、偶联剂的种类以及硫化条件对复合材料力学性能的影响,并采用傅里叶变换红外光谱和扫描电子显微镜对复合材料的微观结构和形貌进行了表征。结果表明,短切CF的用量为12份时,制备的短切CF/FR复合材料的综合性能最佳; 用硅烷偶联剂KH 550对短切CF进行表面处理,制备的短切CF/FR复合材料的力学性能优于以Si 69处理的材料; 制备短切CF/FR复合材料的最佳硫化条件为10 MPa×170℃×15 min; 短切CF与FR之间存在化学键的结合,提高了短切CF与FR的相容性; 用偶联剂KH 550处理短切CF,短切CF与FR的相容性最好。  相似文献   

13.
PAN基高模碳纤维阳极氧化的表面处理   总被引:3,自引:0,他引:3  
采用阳极氧化法对PAN基高模碳纤维进行连续表面处理,重点研究了氧化电流密度对碳纤维宏观力学性能、表面形貌、表面酸性官能团以及碳纤维增强树脂基复合材料(CFRP)层间剪切强度(ILSS)的影响。结果表明,电流密度对纤维力学性能、表面形貌影响不大;氧化后纤维表面总的酸性官能团显著提高,最大增幅达13倍左右;适当的处理条件可使CFRP的ILSS从28.4 MPa提高到80 MPa以上。  相似文献   

14.
采用二氧化碳超临界(scCO2)处理碳纤维(CF)表面的方法,研究了粗糙度对碳纤维/聚芳基乙炔(PAA)树脂复合材料界面性能的影响.处理前后的碳纤维通过XPS,AFM和表面能测量进行了表征.CF/PAA复合材料的界面力学性能通过层间剪切强度测试(ILSS)与断口形貌分析进行了评价.结果表明,scCO2处理前后碳纤维表面的化学组成基本上没有变化.随着碳纤维表面粗糙度的增加,CF/PAA复合材料的界面力学性能先增加后减小.其中粗糙度范围为30~45 nm的样品有最高的ILSS值,43.36MPa,比未处理的样品提高了44%.对复合材料的ILSS提高起主要作用的因素是碳纤维与PAA树脂的界面齿合作用.而齿合作用程度的不同主要是由于不同粗糙度而引起的碳纤维表面物理状态的不同.  相似文献   

15.
采用耐高温环氧树脂四缩水甘油基-4,4’-二氨基二苯醚涂覆碳纤维,通过熔融共混制备界面性能得到改善的碳纤维增强聚苯硫醚复合材料。用不同浓度的环氧丙酮溶液浸泡处理碳纤维,并对制得的复合材料力学性能和断面形貌进行表征。结果表明,在实验范围内,2%的环氧丙酮溶液处理碳纤维后,材料的性能最好,拉伸和冲击强度分别达到150.5 MPa和40.2 kJ/m2。并通过动态力学和差示扫描量热等手段研究了碳纤维表面环氧含量不同对复合材料的动态力学性能和熔融结晶行为的影响。结果表明:在实验范围内,2%的环氧溶液处理碳纤维制得的复合材料的储能模量和结晶温度均最高。  相似文献   

16.
介绍了在碳纤维增强树脂基复合材料中常用的碳纤维表面处理技术,以及不同处理方式对碳纤维力学性能及其增强的聚合物复合材料力学性能的影响。比较了各种表面处理技术的优缺点,并分析了碳纤维表面处理技术的发展趋势。目前,碳纤维的表面处理技术主要有电化学氧化法、偶联剂涂层处理、气相氧化法、液相氧化法和等离子体处理,其中,气相氧化法是目前比较常用的方法,电化学氧化法是目前唯一能够在碳纤维制备时可在线连续运行的技术,且经电化学氧化处理过的碳纤维增强树脂基复合材料的整体性能均得到提高。采用碳纳米管和石墨烯等碳纳米材料对碳纤维进行表面处理已成为新的研究热点,碳纤维表面处理的低成本化、绿色化和连续生产化将是今后的重点研究方向。  相似文献   

17.
利用偶联剂(KH570)改性的石墨烯(GO)和酸化的多壁碳纳米管(MWCNTs)协同改性聚丙烯腈(PAN)基碳纤维制备得到PAN/MWCNTs/GO基碳纤维(MPG),以此为原料,采用湿法造纸技术,制备PAN/MWCNTs/GO基碳纤维复合材料(MPG P)。利用傅里叶变换红外光谱仪、扫描电子显微镜,对MPG纤维进行表征,并利用四探针测试仪、万能试验机和多孔材料分析仪,研究了MPG-P材料的导电性能、力学性能、孔径分布以及孔隙率。结果表明,当MWCNTs/GO含量为0.2 %(质量分数,下同)时,MPG P表现出最佳的拉伸强度(37.21 MPa),电阻率为13.17 mΩ·cm,孔隙率为63.7 %;当MWCNTs/GO=1/2(质量比,下同)时,表现出最佳的拉伸强度(40.13 MPa),比纯PAN复合材料(30.18 MPa)提高了32.97 %,电阻率为13.52 mΩ·cm,孔隙率为65.2 %。  相似文献   

18.
试验研究碳纤维表面处理对碳纤维/NR复合材料性能的影响。结果表明,碳纤维经表面处理后表面沟槽加宽、加深,粗糙度增大,可改善其与橡胶基体的粘合性。与未处理碳纤维/NR复合材料相比,浓硝酸表面处理3h的碳纤维/NR复合材料的拉伸强度提高46%,耐磨性提高5%;300℃×20min高温氧化表面处理碳纤维/NR复合材料的拉伸强度和耐磨性均提高38%;浓硝酸处理1h后再加1.3份钛酸酯偶联剂的碳纤维/NR复合材料拉伸强度提高25%;碳纤维经浓硝酸处理1h后再进行表面浸胶,复合材料的耐磨性提高34%。  相似文献   

19.
在乒乓球拍用碳纤维/环氧树脂复合材料表面进行了不同含量纳米微晶纤维素涂覆的改性处理,研究了纳米微晶纤维素含量对复合材料表面形貌、单丝拉伸强度、剪切强度和弯曲性能的影响,并对断口形貌进行了观察。结果表明,硅烷化改性处理并不会对纳米微晶纤维素的形貌和尺寸产生显著改变;去除上浆剂后的碳纤维抗拉强度约为3.44GPa,剪切强度约为48.3MPa,碳纤维的弯曲强度和弯曲模量分别为418.3MPa和20.1GPa,随着AMEO-NCC含量增加,AMEO-NCC涂覆的碳纤维的单丝抗拉强度、剪切强度、弯曲强度和弯曲模量都呈现先增加而后减小的特征,在AMEO-NCC含量为质量分数0.3%时取得单丝抗拉强度最大值,且都高于去除上浆剂后的碳纤维。  相似文献   

20.
以双峰碳化硅粉末、碳黑、短碳纤维为原料,采用注浆成型、反应烧结法制备了力学性能优异的碳化硅复合材料。研究了硅化反应对碳纤维表面形貌及组分的影响。结果表明:硅化反应在碳纤维表面生成致密β-SiC层,反应过程伴随的体积膨胀增加了纤维表面的粗糙度。混合酸HNO3+HF腐蚀实验表明纤维表面由直径2~5μm的β-SiC晶粒构成。提出了硅化纤维的双层结构模型:外层由微米、亚微米尺度β-SiC晶粒构成,内层由Si–C基团组成的混合物组成。碳短纤维体积分数为30%时,复合材料的弯曲强度、断裂韧性分别达到最大值416 MPa、5.1 MPa?m0.5,相比单一反应烧结碳化硅陶瓷分别提高102%、78%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号