首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对柳林区块煤层气井生产动态影响因素复杂,无法制订合理的增产措施等问题,分析了区内50余口井排采动态规律,探讨了不同类型井产出动态的影响因素。结果表明:区内气井以中低产井为主,初期见气快,后期产气量下降严重。水平井相比于垂直井、丛式井,产气量相对稳定高产。煤层厚度、水文条件是分别影响山西组、太原组煤层产能的主要地质参数,结合工程因素分析认为,区内煤储层敏感性较强,压裂规模以及储层损害是造成区内垂直井低产的主要原因。同时,提出相应的增产参数指标:加砂量大于35 m3,施工液量大于400 m3;排采初期控制液面下降速度为2~10 m/d,产气后套压为0.1~0.3 MPa,减少关井次数,停排采时间小于20 d。  相似文献   

2.
为了解决沁水盆地南部1 000 m以深的煤层气产量普遍较低的问题,以柿庄北区块为研究重点,采用对生产数据综合分析的方法,对深部煤层产气特征、排采变化规律、不同产量的典型井生产动态进行了研究,提出了深部煤层气产能的关键影响因素。研究结果表明:深部煤层气日产气量多小于500 m3,见气时间为16~178 d,单排3号煤层的井动液面较低,合排3号煤和15号煤的动液面较高,井底流压1.70~2.59 MPa;影响产能的因素包括地质、工程技术以及排采3个方面,地质因素主要为煤储层渗透率较低、3号煤与15号煤合采或部分井距断层较近导致产水量较大,工程因素主要是部分井压裂未形成有效通道导致甲烷气体无法渗流,排采因素主要是指排采过程中停机频繁等导致排采不连续影响产气量。  相似文献   

3.
彬长矿区低煤阶煤层气井的排采特征与井型优化   总被引:3,自引:0,他引:3       下载免费PDF全文
为研究我国西部侏罗纪低阶煤储层瓦斯的地面井排采特性及影响因素,以彬长矿区大佛寺井田煤层气井的地质资料、历史排采数据为基础,分析了该区块不同井型煤层气井的产水量、产气量的主要影响因素,并探讨了相关因素的主要控制机理。研究发现储层特性、水文地质条件是影响该区煤层气成藏的重要因素,在所研究的几种井型中,多分支井在该区有着良好的地面排采效果,其最高日产气量为16 582.3 m3,垂直井次之,而U型井则相对较差。排采数据显示井底流压与产气量呈指数关系,井底流压的减小,日产气量呈指数增加的趋势。在煤层气井不同排采时期,动液面高度对产气量的影响有着不同的作用规律,且对高产气阶段的影响更为显著。套压与产气量之间近似表现为线性变化的关系,但不同排采阶段二者线性关系的比例截然不同。在煤层气井的产气衰减阶段,多分支水平井的日产气量/累计产气量的比值与排采时间呈现为良好的E指数衰减关系,并以此构建了以日产量与累计产量之比和开发时间之间的关系为基础的煤层气井产能预测模型,拟合相关系数均高于0.848 2。  相似文献   

4.
结合和顺区块煤层气投产井地质条件、压裂效果及排采控制等特征,分析了影响该区煤层气排采的因素。结果表明构造复杂易造成压裂裂缝与断层沟通,干扰排采;生产煤层渗透率低、解吸压力低是该区煤层气排采的不利条件;15#煤层埋深较浅,产液量低影响煤层排水降压;压裂施工应控制裂缝形态,提高压裂效果,避开区域灰岩含水层对煤层越流补给;合理控制套压,缓慢控制流压,对扩大煤层气解吸范围,提高产气量十分重要。  相似文献   

5.
大量低产低效煤层气井的存在严重制约了煤层气产能转化率和资源动用率的提高,亟需开展低效煤层气井成因解剖和有效治理。基于沁水盆地柿庄南区块1 000余口煤层气井的钻井、测井、录井、压裂、排采和实验测试数据,开展了低效井判识、成因分析和治理体系构建。研究结果表明:基于不同排采阶段,以产气量为主要参数,结合动液面高度、井底流压和排采时限可定义低效井;钻井、压裂和排采等过程均会对煤层气井产能造成不同程度的影响;基于构造、含气量、储层压力、渗透率等关键地质参数叠加和模糊评价圈定了4类(Ⅰ~Ⅳ)可改造地质单元,产能预测表明Ⅰ、Ⅱ、Ⅲ类具有良好的改造潜力;通过递阶优选构建了低效井成因解剖体系,划分了3大类13小类低效井形成类型;提出了地质-工程-排采一体化的低效井综合治理体系,保证资源和储层的有效性,促进缝网-井筒的高效连通,做到科学排采和区域协同降压控制。能提高煤层气单井产气量和产能转化率义。  相似文献   

6.
以樊庄区块16口煤层气井地质资料、排采资料为依据,分析了该区块煤层气井之间产水量和产气量差异的地质影响因素,并进一步探讨了这种差异的地质控制机理。研究结果表明:产水阶段,地下水流体势通过影响煤层水的流向和煤储层含水量控制煤层气井产水量,渗透率通过影响煤层水在储层中的流动能力控制煤层气井的产水量,煤储层渗透率与地下水流体势的负相关性促进了煤层气井之间产水量的差异;产气阶段,排水降压效果通过影响煤层气的解吸量及气、水两相的饱和度和相对渗透率控制煤层气井之间的产水量和产气量差异;另外,煤层气井连通后出现的气水分异现象,进一步促进了煤层气井之间产水量、产气量的差异。  相似文献   

7.
为了了解郑庄区块Z1井区产气分布特征及产气影响因素,依据郑庄区块Z1井区70多口生产井地质和排采资料,分析研究区构造地质特征以及产气产水分布情况。重点探讨产气量与煤层埋深、煤厚、压裂液量、加砂量、动液面下降速率及产水量共6个参数的相关性,并运用灰色关联分析方法,定量确定上述参数中影响煤层气产能的主要因素。研究表明:根据研究区煤层气井海拔高低及断层分布,将全区分为3个区带,即北部斜坡带、中部隆起带和南部断层带。大部分高产气井分布在海拔较高的中部隆起带,而高产水井大部分分布在南部断层带。灰色关联分析结果表明:排采参数产水量、动液面下降速率与产气量关联度较高。因此,在Z1井区排采降压阶段应选择合理的动液面下降速率,为了避免排采过程中产水量过多,应选择离断层较远的构造高点部署井位。  相似文献   

8.
为得到高煤阶储层煤层气井排采的压力-产气-产水动态平衡关系,揭示不同压力控制下的煤储层煤层气井排采的流体效应及机制,以沁南地区X1和X2煤层气井为研究对象,在X1煤层气井排采阶段划分的基础上,分析了不同压力条件下的煤储层煤层气井排采解吸规律及流体效应;研究了不同排采阶段的套压、动液面高度、井底压力及枯竭压力与产能的关系;数值模拟了X2煤层气井在压力控制前后的产能变化特征。结果表明:煤层气井排采的流体效应取决于是否对排采见气初期套压进行控制,排水阶段结束后采用蹩压、控压的排采制度,可有效提高煤层气井的产能。  相似文献   

9.
通过系统分析该区构造地盾条件、水文特征、储层动态变化、钻采工艺、排采制度和生产特征,总结了影响单井产量的地质因素、工程因素和排采因素,并以此对低产井进行了分类,揭示了低产井的主控影响因素。因含气量低、发育小断层和陷落柱等地质因素导致产气量低的煤层气井占低产井的9%;因部分区域煤体结构破碎、井径扩大率超标、压裂施工困难等工程因素导致产气量低的煤层气井占低产井的4%;因排采速率过快、排水降压连续性差导致产气量低的煤层气井占低产井的87%。  相似文献   

10.
胡海洋  赵凌云  陈捷 《煤矿安全》2020,51(6):191-195
为提高煤层气井的产气量,需尽量扩大煤储层的有效压降半径。通过分析煤层气井排采过程中产水产气的互补性变化规律,以贵州多煤层开发井组和山西单一煤层开发区块为例,分析产水对产气的影响,提出煤层气井提产增效的对策。结果表明:煤层气井见套压前后气水产出比发生变化,具有明显的互补性变化规律;单一煤层及多煤层开发的煤层气井均发现压裂液返排率越高,总产气量和平均产气量越高;受地层能量和渗透率的影响,煤层气井压裂液返排率随埋深的变化出现转折,转折深度为该井区煤层气井合适的压裂深度;为尽量扩大煤层气井的有效压降半径,应尽量减小排采过程中的渗透率伤害,避免煤粉颗粒对孔裂隙通道的堵塞。  相似文献   

11.
为了降低煤层气井排采过程中的储层伤害,通过分析松河井田的资源开发条件及煤层气井排采数据,总结各排采阶段不合理排采控制引起的储层伤害特征,提出不同排采阶段合理的排采工艺对策。分析结果表明:松河井田煤层气资源丰度达到2.09×10^8m^3/km^2,煤层气资源开发条件较好;松河井田多煤层合层排采过程中,不合理排采控制工艺对煤层气井的产气量影响较大;排采初期以速敏伤害为主,排采中期以气锁和应力闭合伤害为主;修井作业及停抽期间,气锁效应及应力闭合对煤层造成伤害的可能性增大。合理的排采控制能够有效降低煤层气井的储层伤害,提高煤层气井产气量。  相似文献   

12.
沁南煤层气井产能影响因素分析及开发建议   总被引:9,自引:0,他引:9  
通过比较山西沁水盆地南部57口煤层气井在1.5 a时间内的产气产水特征,分析了影响该区煤层气井产能变化的地质及工程特征因素,并提出相应的开发建议。结果显示:煤层埋深及地下水动力条件、含气量以及气井所处的构造部位是影响沁南煤层气井产能的主控地质因素;开发前的煤储层压裂改造规模、井底流压下降速度以及排采速度是重要工程因素。同时,提出了相应的参数指标:500~700 m的埋深,大于15 m3/t的含气量;早期排水期,采取比较大的降压幅度和比较大的排采冲次,分别为0.022 MPa/d和3.0次/min;出现产气高峰后,开始缓慢降压和降低冲次,分别为0.002 MPa/d和0.4次/min。  相似文献   

13.
煤储层条件是影响煤层气井产能的关键因素。本次研究统计分析了胡底区块276口井的产能分布特征及其与煤层气产气量、煤层埋深、煤层厚度、煤层资源量等条件的关系。研究显示胡底区块煤层气井产能呈现出东南高、西北低的特点,产能小于1000m~3/d的煤层气井占总产气井数的80%。研究结果表明埋深、动液面是控制着整个研究区煤层气产能的关键因素,煤层厚度对煤层产气量影响不大。  相似文献   

14.
不同煤体结构煤储层煤层气排采中渗透率变化规律研究   总被引:1,自引:0,他引:1  
《煤矿安全》2015,(6):8-11
通过不同煤体结构煤三轴应力条件下渗透率实验,结合煤层气井产气情况,分析了排采过程中渗透率的变化规律。研究结果表明:在轴压和围压一定时,孔隙压力降低,煤储层渗透率先减小、后增加;碎软低渗煤层由于机械力学强度小,前期伴随着液面下降,破碎煤粒之间的粒间孔隙急剧闭合,造成煤层渗透率大幅度减小,后期煤体收缩效应改善渗透率作用较原始结构煤层缓慢。研究认为,煤层气井应采用分段控压、稳步降压的排采方法,使煤储层裂隙与孔隙保持一定的张开度,抵抗煤基质变形,以减缓有效应力对渗透率的损坏,增大供气面积,保证煤层气充分解吸,提高产气量。  相似文献   

15.
《煤炭技术》2021,40(6):10-13
以寺河煤矿西二盘区为例,对3#煤层储层地质条件及煤层气井排采数据进行研究,从地质和工程两方面分析了在渗透率基本相同的情况下,影响煤层剩余含气量的主要因素有原始含气量、煤层厚度、煤层埋深、累计产气量、累计产水量、抽采时间等;利用灰色BP神经网络法建立了剩余含气量预测模型,并把预测结果与参数井3#煤层经过5 a抽采的剩余含气量实测数据进行了对比,结果表明:2种预测结果较为接近。  相似文献   

16.
《煤矿安全》2021,52(5):182-187
以沁水盆地的煤层气井为例,通过分析煤层气井的典型排采指标,研究了压裂规模对排采典型指标的影响,探究不同压裂规模对排采典型指标影响的机理。结果表明:煤层气井压裂后产水产气主要依靠煤储层的能量和通道条件;研究区内煤层气井的压裂规模集中在80~200 m~3/m之间,占总井数的86%;煤层气井的累计产水指数、见套压前的累计产水量及返排率与压裂规模指数无关,煤层气井的累计产气量、平均产气量与压裂规模指数有关;随着压裂规模指数上升,累计产气量、平均产气量上升,当研究区压裂规模指数超过140 m~3/m时,累计产气量、平均产气量整体出现下降。  相似文献   

17.
为了掌握潘河区块15号煤层煤层气的生产动态特征,确定影响产能释放的主要因素,实现区域内产气量的平稳接替和潘河区块煤层气的稳定有序开发,本文以潘河区块所实施的15号煤层煤层气试验井为研究对象,统计分析了生产动态参数,全面研究了排采过程中的产水、产气和产煤粉的变化趋势和特征以其影响因素。研究结果表明:15号煤煤层气储层具有产水量低、高产气井少、煤粉产出量大的特点,产水和煤粉量对产气量有明显的抑制作用;区内煤层气井适宜部署在煤层气保存较好的包括背斜等构造高点及斜坡,且含气量超过20m3/d,水动力条件弱的滞留水区;施工液量对压裂效果影响较大,尤其是造缝功能的前置液,在压裂正常情况下以及前置液量在110-210m3范围内,液量和产气量同步变化;在排采过程中,排采初期的降液速度、见气初期的控制以及排采的连续性是影响区内煤层气井产能释放的主要原因。  相似文献   

18.
为解决多煤层煤层气开发目前面临的产气量难以叠加、储层伤害难以控制等问题,提出多煤层煤层气分层控压合层排采技术,该技术分为双泵三通道双煤层分层控压合层排采技术和双套管多煤层分层控压合层排采技术;并研制了配套的合层抽采泵、封隔器、排采监测设备等多煤层分层控压合层排采排采装置。实践结果表明:该技术可实现排采中用不同的动液面控制不同的煤层,提高煤层气排采效率和产气效果。  相似文献   

19.
为了制定与土城区块煤层气合采井相适配的排采制度,基于土城区块煤层气地面抽采示范工程,结合合层排采理论与COMET3数值模拟方法,分析了区块内煤层气地质条件及生产井排采曲线特征,划分了煤层气合采井产出的5个阶段,探讨了合层排采工艺优化措施。结果表明:初期排水阶段应严格控制排水速率,保持液面高度大于450 m、流压高于4.5 MPa;憋压阶段注意控制憋压幅度,在预留一定液面高度基础上憋压;控压产气阶段重点控制流压降低速率,模拟结果显示流压日降幅控制在0.010~0.015 MPa/d排采效果最佳;控压稳产阶段动液面在第1层段停留时间不宜过长,可在0.5 MPa套压下主动缓慢暴露上部产层;产气衰减阶段需维持第3压裂段流压稳定,模拟结果显示0.7MPa作为稳压值将更有利于产气。  相似文献   

20.
煤层气单井排采控压产气阶段的关键问题是如何合理制订排采制度。以贵州省织金试验区煤层气开发排采资料为依托,分析了织金煤层气藏特征,探讨了产气量、产水量、套压、液面深、井底流压等排采动态参数间的规律,提出了井底流压稳定值的计算方法,并研究了井底流压的控制,最后给出了适合该区块排采制度的建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号