首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对原始活性炭和水厂污泥提取的金属改性的活性炭吸附硝酸盐氮的性能进行了探究。X射线荧光光谱仪(XRF)分析表明,活性炭表面负载了Al、Fe等元素,Fe的负载量为4.61 mg/g, Al的负载量为13.80 mg/g,改性后活性炭比表面积有所下降。改性活性炭对硝酸盐氮的吸附过程符合准二级动力学方程,Langmuir吸附等温式在288 K时,改性活性炭对硝酸盐氮的吸附量为2.752 5 mg/g,改性活性炭对硝酸盐的吸附过程是熵增和放热的自发反应。在酸性和中性条件下,改性活性炭对硝酸盐的吸附效果较好。  相似文献   

2.
采用液相还原法制备载铁活性炭,对负载铁前后及吸附铀离子U(VI)后的活性炭进行表征,考察了其吸附性能.结果表明,铁以球形疏散负载于活性炭的孔隙中,载铁后比表面积为10.3 m~2/g,孔容为0.0245 cm~3/g,最可几孔径为10.5 nm.吸附U(VI)过程中铁表面发生腐蚀并形成新晶体,比表面积增至16.7 m~2/g,孔容增至0.0955 cm~3/g,最可几孔径增至17.9 nm.载铁活性炭对水溶液中铀离子的吸附机理为吸附、氧化还原和沉淀.在Fe SO4?7H2O与活性炭质量比1.25/1、载铁活性炭投加量0.6 mg/m L、反应时间60 min及pH值5.00的条件下,水溶液中U(VI)的去除率最佳,达99.9%,U(VI)初始浓度和反应温度的影响较小.载铁活性炭吸附U(VI)的过程符合Freundlich(R2=0.992)和Langmuir(R2=0.943)吸附等温模型,动力学过程符合准二级动力学模型(R2=0.999),扩散速率主要由液膜扩散控制.  相似文献   

3.
利用聚乙烯亚胺(PEI)通过浸渍处理玉米芯活性炭(AC)制备PEI改性AC(PEI-AC),并将PEI-AC用于吸附工业废水中的甲醛。采用单因素静态实验对影响吸附的4个主要因素(吸附剂投加量、pH值、初始浓度和吸附时间)进行分析,并结合吸附过程的动力学特征以及SEM、FT-IR和XRD等特性表征对吸附机理进行了初步探究。研究结果表明,当PEI-AC的投加量为0.3 g、pH 2、初始浓度为10 mol/L且吸附时间为2 h时,PEI-AC对甲醛的吸附量为5.92 mg/g,吸附率高达89.2%,而在相同条件下未改性AC对甲醛的吸附率仅为42.2%。因此,PEI改性可以极大地提高AC对甲醛的吸附能力。利用准一级、准二级及内扩散动力学模型对PEI-AC吸附甲醛的过程进行拟合,结果发现该吸附过程符合准二级动力学模型;进一步采用Langmuir和Freundlich模型对等温吸附过程进行描述,研究结果表明,该吸附过程符合Langmuir模型,饱和吸附量为5.79 mg/g。  相似文献   

4.
改性活性炭吸附污水中氨氮的性能   总被引:1,自引:0,他引:1  
《应用化工》2015,(5):874-877
采用浸渍法制备一系列过渡金属(Zn,Fe,Cu)改性活性炭吸附剂,并探讨其吸附污水中氨氮的性能。结果表明,过渡金属的添加能在一定程度上提高活性炭吸附氨氮性能,其中铜为最佳改性元素。分别采用准一级动力学方程、准二级动力学方程和颗粒内扩散方程对改性活性炭吸附氨氮行为进行拟合。结果显示改活性炭对氨氮的吸附过程可用Langmuir吸附等温方程较好地拟合,在温度为25℃时,单分子层饱和吸附量为7.19 mg/g,其吸附动力学较符合准二级反应动力学方程。  相似文献   

5.
以硝酸锌、硫化钠和活性炭为原料,采用化学沉淀法制备活性炭(AC)负载纳米硫化锌的复合材料Zn S/AC。利用SEM、EDS、XRD、FTIR、BET等对其进行了表征。考察了Zn S/AC对水溶液中铀酰离子(UO_2~(2+))的吸附性能,探讨了吸附时间、初始铀酰离子质量浓度、pH、吸附剂投加量、温度等对吸附性能的影响,并对吸附过程进行了热力学和动力学模拟,探讨了吸附机理。结果表明,Zn S/AC的比表面积为201.1961m~2/g,明显大于活性炭的比表面积(165.0240 m~2/g),平均孔径为4.70 nm,孔容为0.038 cm~3/g。在初始铀酰离子质量浓度为35 mg/L、pH=6、吸附时间为120 min、Zn S/AC投加量为0.01 g、处理温度为50℃下,吸附剂对铀酰离子的吸附量为63.75 mg/g。吸附过程符合准二级动力学方程和Langmuir吸附等温模型,热力学参数?G<0、?S>0、?H>0,表明该吸附是一个自发的吸热过程。  相似文献   

6.
《应用化工》2022,(5):874-877
采用浸渍法制备一系列过渡金属(Zn,Fe,Cu)改性活性炭吸附剂,并探讨其吸附污水中氨氮的性能。结果表明,过渡金属的添加能在一定程度上提高活性炭吸附氨氮性能,其中铜为最佳改性元素。分别采用准一级动力学方程、准二级动力学方程和颗粒内扩散方程对改性活性炭吸附氨氮行为进行拟合。结果显示改活性炭对氨氮的吸附过程可用Langmuir吸附等温方程较好地拟合,在温度为25℃时,单分子层饱和吸附量为7.19 mg/g,其吸附动力学较符合准二级反应动力学方程。  相似文献   

7.
为提高活性炭对Pb~(2+)的吸附效果,用硝酸铁对活性炭进行了改性处理。采用BET、SEM、Boehm等方法对改性前后活性炭的理化特性进行了表征,考察了吸附时间、p H、吸附剂投加量对改性前后活性炭吸附Pb~(2+)效果的影响。结果表明,相比于未改性活性炭(GAC),硝酸铁改性活性炭(Fe-GAC)比表面积减少,酸性含氧官能团增加,极性增强。对于质量浓度为10 mg/L的Pb~(2+)溶液,Fe-GAC的最佳投加量为2.0 g/L,此条件下Pb~(2+)去除率可达到98.73%,比采用GAC提高了30.15%。吸附剂吸附Pb~(2+)过程与Langmuir吸附等温线方程拟合较好,相关系数R2在0.99以上。  相似文献   

8.
《应用化工》2022,(1):117-121
采用醋酸和高温热处理改性活性炭,用于吸附废水中的苯酚,探究pH、温度、苯酚浓度、时间对吸附性能的影响。结果表明,吸附苯酚溶液的优化条件为:吸附剂为经65%醋酸改性后700℃煅烧的改性活性炭,其用量为0.5 mg/L,苯酚浓度100 mg/L,pH=3,吸附温度40℃,时间80 min。在此条件下,苯酚的吸附量达112.36 mg/g。在25℃下,静态和动态实验表明,活性炭对苯酚的吸附更满足Freundlich吸附模型和准二级动力学方程。  相似文献   

9.
采用醋酸和高温热处理改性活性炭,用于吸附废水中的苯酚,探究pH、温度、苯酚浓度、时间对吸附性能的影响。结果表明,吸附苯酚溶液的优化条件为:吸附剂为经65%醋酸改性后700℃煅烧的改性活性炭,其用量为0.5 mg/L,苯酚浓度100 mg/L,pH=3,吸附温度40℃,时间80 min。在此条件下,苯酚的吸附量达112.36 mg/g。在25℃下,静态和动态实验表明,活性炭对苯酚的吸附更满足Freundlich吸附模型和准二级动力学方程。  相似文献   

10.
对颗粒活性炭吸附不锈钢酸洗废水中的Cr3+和Fe3+进行了研究. 结果表明,活性炭对Cr3+的饱和吸附量为4.546 mg/g,对Fe3+的饱和吸附量为40.76 mg/g,吸附平衡时间分别为90和60 min. 对吸附过程进行准一级、准二级动力学模型拟合,发现准二级模型拟合较好. 活性炭对Cr3+的吸附基本符合Langmuir和Freundlich等温吸附模型,而对Fe3+的吸附与BET吸附模型拟合较好,吸附Cr3+, Fe3+的活化能Ea分别为37.19和51.01 kJ/mol. 活性炭对Cr3+的吸附以化学吸附为主,而物理吸附则主导对Fe3+的吸附.  相似文献   

11.
通过不同温度下的静态吸附实验,研究了活性炭吸附ADN的动力学和热力学特征。以吸附量和解吸率为指标对3种活性炭(AC、BC、CC)进行对比研究,利用准一级动力学模型、准二级动力学模型和颗粒内扩散模型考察了ADN的吸附动力学,并利用Langmuir和Freundlich吸附等温模型描述吸附热力学行为。结果表明,活性炭AC是分离ADN的理想吸附剂,3种活性炭吸附ADN的动力学曲线更符合准二级动力学模型;Freundlich模型描述活性炭AC对ADN的吸附规律更为合适,该吸附△G0,△S0,吸附过程可自发进行;不同吸附量下的△H0,吸附为吸热过程。  相似文献   

12.
对Fe改性活性炭制得Fe2O3-AC吸附剂,并用于对硝基苯酚废水处理;通过静态试验方法研究所制备吸附剂对水溶液中对硝基苯酚的吸附等温和吸附动力学过程。结果表明,Fe2O3-AC吸附剂对废水中对硝基苯酚的吸附过程符合Langmuir等温方程,对硝基苯酚最大吸附量可达286.4 mg/g,内扩散不是吸附过程唯一的控制步骤,准2级动力学模型能更好的反映Fe2O3-AC吸附剂对对硝基苯酚的吸附机理。  相似文献   

13.
为探究煤粉吸附剂对选矿废水中有机污染物的吸附过程,利用煤粉作为吸附剂用于选矿废水中乙硫氮污染物的吸附。研究煤粉吸附剂自身物理化学性质特点,并通过配制乙硫氮污染物模拟废水,研究煤粉投加量、吸附时间等吸附条件对吸附过程的影响,重点研究煤粉吸附剂吸附乙硫氮污染物的吸附等温线、吸附速率控制过程等。结果表明煤粉吸附剂表面结构复杂,具有丰富的孔隙结构和含氧官能团,是一种天然吸附剂。煤粉投加量和吸附时间是影响吸附效果的重要因素,随着煤粉投加量增加,溶液中乙硫氮去除率先增加后趋于稳定,吸附量不断减少;随着吸附时间延长,乙硫氮去除率和吸附量开始时增加比较迅速,吸附时间达到30 min后,去除率和吸附量均趋于稳定。乙硫氮溶液初始浓度50 mg/L,煤粉投加量5 g/L,振荡吸附时间30 min条件下,乙硫氮去除率达86.53%,吸附量为8.65 mg/g。利用Langmuir和Freundlich等温吸附模型拟合煤粉对乙硫氮的吸附行为,Freundlich等温吸附模型更加符合该吸附过程,说明其吸附行为是以表层为主的多层吸附。利用准一级动力学方程、准二级动力学方程和颗粒内部扩散模型进行吸附动力学研究,结果表明该吸附过程更加符合准二级动力学模型,吸附速率的控制步骤同时包含外部液膜扩散、表面扩散以及颗粒内部扩散过程,但以表面扩散为主导作用。  相似文献   

14.
《应用化工》2022,(5):876-881
以煤矸石、石灰石和氯化铝为原料,制备呈碱性的复合吸附剂和呈中性的复合吸附剂,处理含铅(Ⅱ)废水,结果表明,碱性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间60 min,p H为1,反应温度为25℃时,此时吸附量为7.62 mg/g,去除率为96.68%;中性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间80 min,p H为1,反应温度25℃,此时吸附量达到7.19 mg/g,去除率为85.40%。碱性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准二级动力学拟合,中性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准一级动力学拟合。采用Freundlich方程描述碱性复合吸附剂吸附低浓度和高浓度含铅(Ⅱ)废水,用Langmuir方程描述中性吸附剂吸附低浓度含铅(Ⅱ)废水,用Temkin方程描述中性吸附剂吸附高浓度含铅(Ⅱ)废水。  相似文献   

15.
《应用化工》2016,(5):876-881
以煤矸石、石灰石和氯化铝为原料,制备呈碱性的复合吸附剂和呈中性的复合吸附剂,处理含铅(Ⅱ)废水,结果表明,碱性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间60 min,p H为1,反应温度为25℃时,此时吸附量为7.62 mg/g,去除率为96.68%;中性吸附剂的最佳吸附条件为投加量0.5 g,吸附时间80 min,p H为1,反应温度25℃,此时吸附量达到7.19 mg/g,去除率为85.40%。碱性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准二级动力学拟合,中性复合吸附剂吸附含铅(Ⅱ)废水能较好的与准一级动力学拟合。采用Freundlich方程描述碱性复合吸附剂吸附低浓度和高浓度含铅(Ⅱ)废水,用Langmuir方程描述中性吸附剂吸附低浓度含铅(Ⅱ)废水,用Temkin方程描述中性吸附剂吸附高浓度含铅(Ⅱ)废水。  相似文献   

16.
用透射电子显微镜对制备得到的石墨烯进行了表征,探讨了反应时间、吸附剂用量和染料初始浓度等对吸附酸性品红效果的影响,采用Langmuir和Freundlich等温吸附模型对吸附平衡进行拟合,又用准一级动力学方程和准二级动力学方程描述石墨烯对酸性品红的吸附动力学过程。结果表明,在石墨烯对AF的吸附,在前10 min内反应速率很快,约在60min内达到吸附平衡,最适的吸附剂投加量为30 mg。准二级动力学模型和Langmuir等温吸附模型能较好描述石墨烯对AF的吸附过程,最大吸附量为62.112 mg/g,计算结果表明该吸附是一种单分子层吸附为主的化学过程。  相似文献   

17.
以膨润土和活性炭为原料制备了复合吸附剂并将之应用于含锰离子废水的吸附。考察了不同条件下该吸附剂对水体中Mn(Ⅱ)的去除效果,并研究了吸附动力学特征和等温吸附过程。结果表明膨润土和活性炭复合吸附剂对Mn(Ⅱ)具有优良的吸附能力,在25 ℃下,当投加量为4 g/L、Mn(Ⅱ)初始质量浓度为50 mg/L、溶液pH为6时,吸附180 min,吸附率为93.2%。准一级、准二级动力学和内扩散模型用来拟合吸附过程,结果表明准二级动力学符合该吸附过程,吸附速率常数为0.003 6 g/(mg·min),内扩散过程不是吸附的限速步骤,还存在吸附机制的制约。用Langmuir和Freundlich模型描述吸附等温过程,结果得出该吸附过程服从Langmuir吸附,饱和吸附容量为27.781 mg/g。  相似文献   

18.
《应用化工》2022,(3):615-619
以柠檬酸改性白酒糟为吸附剂,考察了pH值、吸附剂投加量、反应时间、吸附质初始浓度等对水中Cu、Cd、Cr和Pb吸附性能的影响,探究了改性白酒糟的等温吸附及吸附动力学特性。结果表明,相对最优的实验条件为pH=4,吸附剂投加量4 g/L,反应时间3 h,吸附质初始浓度60 mg/L;改性白酒糟对Cu、Pb、Cd、Cr的吸附过程更符合准二级动力学方程和Langmuir等温线方程,计算得到理论最大吸附量为Cu 11.19 mg/g, Cd 7.49 mg/g, Cr 5.63 mg/g, Pb 9.36 mg/g。  相似文献   

19.
镁浸渍生物炭吸附氨氮和磷:制备优化和吸附机理   总被引:4,自引:0,他引:4       下载免费PDF全文
利用废弃的木薯杆制备了载镁的生物炭吸附剂。以氨氮、磷为目标污染物,采用控制变量法研究了不同镁盐改性、MgCl2浓度、碳化温度、固液比和碳化时间对氨氮、磷吸附性能的影响,制备最具吸附性能的载镁木薯秆基生物炭(Mg-BC),进行批量吸附氨氮和磷实验。利用等温模型(Langmuir和Freundlich模型)和动力学模型(准一级动力学、准二级动力学和颗粒内扩散模型)探究其吸附特性,在其吸附特性研究的基础上,运用FTIR、XRD、SEM-EDS、XPS等表征手段对其吸附机理进行探讨。结果表明,Mg-BC对氨氮和磷的吸附过程均符合Freundlich模型和准二级动力学模型,为多分子层的化学吸附,理论饱和吸附量分别为43.48 mg·g-1和96.00 mg·g-1。结合表征结果推测,Mg-BC吸附氨氮、磷主要通过官能团作用、络合沉淀和离子交换等多过程协同完成。  相似文献   

20.
《应用化工》2022,(1):17-21
建立了普通橘子皮、Fe(Ⅲ)负载改性橘子皮对Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的吸附研究,采用原子吸收光谱仪测定Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的浓度,分别研究了吸附剂投加量、pH、吸附时间等对废水中Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附研究,且对吸附动力学和吸附等温线进行了分析。结果表明,Fe(Ⅲ)负载改性的橘子皮比普通橘子皮对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附效果更佳,最大吸附量为119.25 mg/g,吸附去除率达到95.66%,Langmuir能更好地描述普通橘子皮和Fe(Ⅲ)负载改性橘子皮吸附剂对Pb(2+)的吸附过程,准二级动力学方程拟合结果R(2+)的吸附过程,准二级动力学方程拟合结果R2在0.999 4以上,说明吸附过程被化学吸附所控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号