首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郑志行  李谦  张家元  周浩宇 《化工进展》2021,40(4):2152-2160
基于Aspen Plus软件的Gibbs自由能最小化法,本文建立了煤粉在Shell气流床中的气化模型。该模型预测气化温度和煤气组成,与文献试验结果吻合良好。利用Aspen Plus的灵敏度分析模块研究了氧煤比、氧气体积分数和氧气预热温度对气化结果的影响,并进行了正交模拟计算,研究了以上3种因素共同作用的结果。结果表明:氧煤比增加使碳转化率升高,冷煤气效率先升高后降低,并在氧煤比为0.9kg/kg时取得最大值77.72%;氧气体积分数增加使煤气热值、碳转化率和冷煤气效率升高,氧煤比为0.8kg/kg且氧气体积分数为50%时,冷煤气效率可达82.6%;氧气预热温度增加使碳转化率、冷煤气效率升高,氧煤比为0.8kg/kg且氧气预热温度为600℃时,冷煤气效率可达82%。通过正交模拟计算综合分析,氧煤比对冷煤气效率和碳转化率的影响作用占首位,氧气体积分数对煤气热值、有效气体积分数、煤气产率的影响作用占首位,氧气预热温度对煤气化指标影响较小。在实验范围内,当氧煤比0.8kg/kg、氧气体积分数100%、氧气预热温度300℃时的煤气热值达到最大值3011kcal/m3;当氧煤比为0.8kg/kg、氧气体积分数60%~100%、氧气预热温度300~500℃时的冷煤气效率达到最大值83.46%。  相似文献   

2.
在百公斤级循环流化床粉煤富氧气化装置上连续运行131 h的中型实验研究表明,蒸汽虽有利于气化炉底部温度稳定和物料流化,但不利于煤气热值、碳转化率及冷煤气效率提高,在确保物料流化和温度稳定前提下,应尽量减少蒸汽用量;随着氧气体积分数增加,煤气的CO、H2和CH4等有效成分含量不断增加,煤气热值也不断升高,但升幅不断变小,纯氧气化时的煤气热值是空气气化时的2.85倍;而产气量、产气率、碳转化率和冷煤气效率却是先增加后降低,在氧气体积分数为24.3%时达到峰值,这表明低富氧体积分数用于合成煤气热值提高有较好的效果;另外,氧气体积分数的增加降低了装置的操作安全稳定性,易导致气化炉结焦停炉;综合表明,较低富氧气化更利于合成煤气热值的提高。  相似文献   

3.
华亭煤空气、富氧及纯氧地下气化特性研究   总被引:1,自引:0,他引:1  
对比研究了气化剂中氧气体积分数分别为21%,32%,42%和100%条件下的主要产气指标。结果表明,随着气化剂中氧气体积分数的上升,煤气有效组分和煤气热值呈上升趋势;氧气消耗随之增加,空气消耗相应降低,煤耗量增加,水蒸汽消耗量增加,而水蒸汽分解率下降;煤气产率呈下降趋势,而气化效率呈上升趋势;煤气产量和气化剂体积比由1.31降至1.16。  相似文献   

4.
在高温固定床反应器中,以木屑炭为原料,进行木屑炭CO2气化的特性研究。考察了气化温度和CO2流量对燃气各组分体积分数、热值、固体产率、产气率的影响。结果表明:随着气化温度从750 ℃升高到950 ℃,CO体积分数明显增加,CO2体积分数明显减少,燃气热值增加较明显,而从950 ℃升高到1 050 ℃时,燃气热值增加趋势减缓。CO2作为气化介质,随着其流量增加,固体产率减少,气体产率增加,燃气组分中CO2体积分数明显增加,CO体积分数先增加后减少,燃气热值先增大后减小。CO2流量为15 mL/(min·g)时,燃气热值最大。气化温度950 ℃、CO2流量15 mL/(min·g)为较佳的气化条件,此时气化制备的气体中CO体积分数为51.51%,CO2体积分数为37.99%,燃气热值为8.03 MJ/m3,产气率为0.78 L/g。  相似文献   

5.
以氧气-水蒸气-二氧化碳作为气化介质,松木屑为原料,采用Aspen Plus软件,结合自建模型,对生物质气化进行了模拟研究。首先,利用文献中的数据对模型进行了验证,模拟结果与文献中的数据基本吻合,证明了该模型的正确性。接着,考察了气化温度、氧气用量(cER)、水蒸气与生物质质量比(mS/mB)、二氧化碳与生物质质量比(mCO2/mB)对产气组成、气体热值、气体产率、气化效率和产气氢碳比(nH2/nCO)的影响。结果表明:在850℃、101.325kPa、cER=0.2、mS/mB=1、mCO2/mB=0.6的条件下,气化产物特性为气体热值7.45MJ/m3、气体产率1.78m3/kg、气化效率73.3%、氢碳比1.79。适当提高气化温度有利于气化。cER的增大使气体热值、产率和气化效率均迅速降低;但对产气中氢碳比的影响较小。此外,气化剂中水蒸气的适量增加有利于氢气的产生并能明显提高其体积分数,二氧化碳的适量增加有利于一氧化碳的产生并能在一定程度上提高其体积分数,二者均能有效调节产气的氢碳比。  相似文献   

6.
为弥补现有水煤浆气流床气化技术的不足,研发了一种同向多轴煤气化装置,采用Aspen Plus建立了同向多轴水煤浆气化数值模拟模型,分析了水煤浆浓度、氧煤比和碳转化率对煤气化效果的影响。结果表明,随着氧煤比的增加,H_2、CO、有效气含量均先增大后降低,气化温度逐渐升高,最佳氧煤比为0.61,此时有效气含量最大。随碳转化率的升高,CO和H_2含量均增大,气化温度逐渐降低,对于气化炉而言,提高碳转化率可增加有效气含量。水煤浆浓度分别为60%、62%和65%时,有效气(干基)含量分别为81.3%、82.5%和84.2%,水煤浆浓度每提高1%,有效气含量增加约0.6%。  相似文献   

7.
采用热解、重整、燃烧解耦分离的解耦三床气化(decoupled triple bed gasification,DTBG)系统,以橄榄石为原位焦油裂解催化床料,进行了煤催化气化实验。研究了煤种、煤进料速率、重整器温度以及水碳比(S/C)对煤热解焦油裂解/重整反应的影响。结果显示:随着煤挥发分含量增加,气体产率、碳转化率、冷煤气效率以及产气中的H_2含量增加。由于半焦不参与气化反应,导致碳转化率和冷煤气效率偏低。煤和催化剂比例的改变会影响气体产率和产气组成,当煤的进料速率从0.12 kg/h增加到0.30 kg/h时,气体产率从0.28 m~3/kg增加到0.46 m~3/kg,H_2含量从28.4%增加到50.5%。重整器温度的升高有利于促进煤焦油裂解转化,从而增加气体产率。当重整器温度为850℃、S/C为1.0时,气体产率达到了0.60 m~3/kg,橄榄石催化剂有效地降低了焦油含量,焦油产率仅为2.11g/m~3。S/C的升高增强了焦油水蒸气重整反应,但引入过量的水蒸气会导致反应器内气体的流速加快,缩短了反应物的停留时间和反应时长,减缓了焦油水蒸气重整反应的反应程度。  相似文献   

8.
利用Aspen Plus软件对生物质二氧化碳气化流程进行了严格稳态模拟,模拟结果与实验数据吻合良好。在此模型基础上分别研究了CO2-O2,H2O-CO2和H2O-CO2-O23种组合气化剂的工艺特性,通过调节温度、氧气当量比、CO2/C(摩尔比)和H2O/C(摩尔比)4个影响生物质气化的参数,分析气体产率和冷煤气效率变化规律,从而获得最优流程优化参数。研究结果表明:随着温度升高,气体产率和冷煤气效率升高,1 000℃以后趋于平稳;随着氧气的增加气体产率和冷煤气效率降低,较低的混合气当量比下产生的合成气较为理想;二氧化碳增加,一氧化碳的产率和冷煤气效率大幅提高,氢气的产率几乎不变;随着水蒸汽的比例增加,氢气产率增加,一氧化碳和甲烷减少,冷煤气效率先减少再增加,并在0.1到0.15之间有最小值。  相似文献   

9.
采用Aspen Plus流程模拟软件模拟德士古气化炉,并结合工业运行数据对Aspen Plus模型的热损失进行校正。在此模型中通过改变进氧量和进水量来改变氧煤质量比和水煤浆中煤的质量分数,并分析氧煤质量比和水煤浆中煤的质量分数等因素对气化温度、气化产物、冷煤气效率和气化经济性的影响。结果表明:随着氧煤质量比的增大,气化温度呈两段式增长,有效气(CO+H_2)含量和冷煤气效率先升高后降低,气化成本呈相反的变化趋势。随着水煤浆中煤的质量分数的增加,比氧耗、比煤耗和比水耗都有不同程度的降低,冷煤气效率升高,气化成本降低。此外,水煤浆中煤的质量分数大于65%时,其对气化成本影响开始减弱。以气化温度为约束条件建立优化空间,可在操作空间中找到有效气含量、冷煤气效率和经济性最佳的操作点。  相似文献   

10.
基于Aspen Plus抚顺式油页岩干馏工艺数值模拟   总被引:1,自引:0,他引:1  
孙佰仲  韩拓  王海刚 《现代化工》2013,33(6):125-129,131
在Aspen Plus平台上建立了抚顺式油页岩干馏工艺模型,利用Aspen Plus的灵敏分析模块研究了抚顺炉气化段温度对产气组分的影响、空气/水蒸汽质量流率比值对产气组分和产气热值的影响,以及干馏段温度对收油率的影响,模拟结果与实际数据吻合良好。结果表明,抚顺炉气化段温度在650~750℃反应最为剧烈,生成的气体量收益最好。随着空气/水蒸汽质量流率比的逐渐增加,CH4和CO2量逐渐减少,CO、H2和N2量逐渐增加,热值也随之降低。干馏段温度在550℃时,收油率达到6.85%,可作为干馏炉热解段的最佳运行温度。  相似文献   

11.
在固定床内进行了氧气、二氧化碳和水蒸气混合气氛下贫煤与玉米秸秆共气化实验.实验分析了秸秆比例、温度及氧浓度对生成可燃气体组分及热值的影响.结果表明:秸秆的加入促进了CO和烃类的生成,抑制H_2的生成,而过量的秸秆会降低各产气组分及气体热值.CO和H_2分别在秸秆比例为0.2和0时达到最大,秸秆比例为0.2时气化热值最高.升高温度能促进气化反应,提高产气组分,而过高的温度抑制了C_nH_m的生成.氧浓度的提高能显著提高气体组分及产气热值,理想的氧浓度为0.2.载气中加入适量CO_2可提高产气热值.  相似文献   

12.
为探索高含水率褐煤原位CO2气化工艺的可行性,建立了移动床管式炉实验装置,以未经干燥的褐煤为原料,考察了温度和CO2流量对产物产率、气体组分、燃气热值等气化过程评价指标的影响.结果表明,褐煤与原位蒸汽、CO2的气化反应同时进行;在CO2流量为1.1L/min条件下,随着气化温度的升高,气体产率和碳转化率明显提高;CO2流量的增加使其与新生半焦的气化反应加强,产气率和碳转化率提高,燃气总热值也相应增大.结果证明,高含水率褐煤原位CO2气化工艺是褐煤高效、清洁利用的新途径.  相似文献   

13.
基于Aspen Plus工作平台,运用Gibbs自由能最小化原理,对气流床粉煤气化过程进行了数值模拟,并对流程算法进行了改进。研究了氧煤比、蒸气煤比、压力及粉煤粒径对气化炉出口气体组成、温度、冷煤气效率、碳转化率及有效气产率的影响。结果表明:模拟值和实验值有良好的相似性;氧煤比对气化进程的影响较蒸汽煤比及其它操作条件更为显著;并确定了模拟煤种的最佳氧煤比是0.70~0.80kg/kg,气化炉出口CO+H2的最大干基体积分数为96.48%,冷煤气效率最高为83.56%,最大有效气产率为1.74m^3/kg;氧煤比每升高0.1kg/kg,气化炉出口温度升高约40℃,而蒸汽煤比每升高0.1kg/kg,气化炉出口温度降低约8℃。  相似文献   

14.
循环流化床煤气化炉在工业应用过程中,由于试验煤种及操作条件的多样性,通过试验法优化操作过程所需周期较长、成本较大。因此以大量工程数据为边界条件,基于Gibbs自由能最小化原理,利用Aspen Plus对气化过程进行模拟,通过灵敏度分析,研究了单因素氧煤比、蒸汽煤比、气化压力、空气/蒸汽预热温度变化对气化指标的影响;并运用正交实验,研究了以上4种因素共同作用的结果。研究结果表明:氧煤比增加使有效气(CO+H_2)含量、冷煤气效率先增加再减小,并在0.45~0.50kg/kg时取得最大值;蒸汽煤比增加使煤气热值和气化温度减小,对有效气含量基本没有影响;气化压力增加使煤气热值和气化温度增加;空气/蒸汽预热温度增加使气化温度、有效气含量、冷煤气效率增加,煤气热值减小。通过正交实验综合分析,氧煤比和空气/蒸汽预热温度对气化指标的影响较为显著,两者对气化指标的影响趋势基本一致;蒸汽煤比主要影响煤气热值,而气化压力主要影响比氧耗,对其他指标影响较小。  相似文献   

15.
基于化学链气化技术依靠气固反应定向调控气化产物中H_2S和SO_2摩尔比为2的优势,将化学链气化与Claus工艺中的催化转化单元相结合,提出了高硫石油焦化学链气化制合成气和回收硫磺的新系统。针对系统核心单元,即化学链气化过程,基于Aspen Plus,开展热输入10 MWth的高硫石油焦化学链气化过程模拟,以赤铁矿石为载氧体,水蒸气为气化介质,重点考察了氧碳比、气化温度对化学链气化过程及硫转化过程的影响。结果发现,氧碳比的增大导致合成气产率显著降低,但系统从需要外部提供能量逐渐转变为对外部放热,在氧碳比0.8669~0.9535区间内,系统可以达到热量自平衡。同时,气化温度的提高对合成气产率是有利的,在975℃时达到2.15 m~3/kg,主要是由于CO体积分数随气化温度增加而增加。氧碳比和气化温度的提高都会导致H_2S浓度的降低和SO_2浓度的提高。并且研究了当H_2S和SO_2摩尔比为2的最佳工况时,氧碳比和气化温度为反相关,其中氧碳比为0.8669,气化温度为900℃时,冷煤气效率为64.09%。  相似文献   

16.
以O2/水蒸气作为气化剂,对褐煤半焦气化过程进行实验研究.结果表明,随着气化温度的提高,在生成的煤气组成中CO和H2含量增加,而CO2和CH4的含量减少,煤气热值和合成气产率均增加;在温度一定时,随着氧气流量的增加,煤气中CO含量和H2含量先增加然后逐渐减少,CO2含量增加,CH4含量减少,煤气热值和合成气产率均存在一个最大值.  相似文献   

17.
鼓泡流化床垃圾衍生燃料富氧气化   总被引:2,自引:0,他引:2       下载免费PDF全文
在鼓泡流化床上进行两种垃圾衍生燃料(RDF)的富氧气化试验,考察了RDF的热重特性并分析了气化温度、当量比及富氧浓度对气化特性的影响.结果表明:两种RDF均由纤维素及塑料类组分构成.随着温度由650℃升高至800℃,两种RDF产气的H2、CO及CH4浓度均逐渐增加,产气热值和气化效率同时提高.当量比增大时可燃组分浓度先略有增大后逐渐减小,但气体产率不断增大.RDF1及RDF2分别在当量比为0.22及0.27处达到最佳气化效率.富氧气化可有效改善气化品质,提升合成气热值,富氧浓度为45%时RDF1及RDF2合成气热值均达到最大,分别为8.6 MJ·m-3及9.2 MJ·m-3.  相似文献   

18.
基于Aspen Plus软件建立石油焦流化床空气-水蒸气复合气化模型,该模型的数值模拟结果与实验值能够吻合.利用Aspen Plus灵敏度分析模块考查了气化温度、压强、空气当量比(equivalence ratio)、水蒸气与石油焦质量比(m_(steam)∶m_(pc),下标pc为petroleum coke)对燃气体积分数、燃气热值和气体产率的影响.结果表明:当选取恰当的空气当量比和m_(steam)∶m_(pc)值时,温度对燃气体积分数影响不大;较大的压强有利于甲烷的产生,使燃气热值提高;随着空气当量比的增加,氧化反应强度增强,燃气热值减少;较高的m_(steam)∶m_(pc)有利于氢气的产生,但水蒸气通入量过高使燃气热值下降;燃气热值与气体产率变化趋势相反.  相似文献   

19.
段锋  金保昇  黄亚继  李斌  章名耀 《化工学报》2009,60(12):3112-3116
在实验室规模加压湍动循环流化床气化炉上,研究了气化剂预热温度对煤气化特性的影响。结果表明:气化介质温度从400℃提高到700℃后,煤气热值增加21%;煤气中可燃组分H2和CO浓度分别从10.55%和9.57%提高到13.62%和13.12%;不可燃组分N2和CO2浓度分别从61.03%和16.14%降低到57.03% 和13.7%;甲烷含量变化较小;冷煤气效率由49.3%增加到56%。碳转化率和干煤气产率随气化剂预热温度的不同变化较小。实现了循环流化床提升段下部湍动流化、上部环核流动的特殊流场结构,与已有研究结果相比,煤气热值、煤气产率、冷煤气效率都略有提高,更加适合煤气化。  相似文献   

20.
感冒清热颗粒中药渣中试规模循环流化床气化实验   总被引:2,自引:0,他引:2  
范鹏飞  李景东  刘艳涛  董玉平  梁敬翠  盖超  张彤辉 《化工进展》2014,33(8):1979-1985,1991
以感冒清热颗粒中药渣为原料,在双回路循环流化床中试设备中进行热解气化实验,研究原料含水率、原料粒径以及空气当量比ER对其气化特性的影响。结果表明:①随着原料含水率的提高,炉内平均温度降低,产生的燃气中焦油含量、CO2含量明显提高;CO含量、气体产率、碳转化率显著降低;H2含量、燃气热值以及气化效率均呈现先增大后减小的趋势。②原料粒径越小,反应炉内平均温度越高,燃气中焦油含量越低,燃气热值和气体产率越高,气化效率以及碳转化率越高;H2、CH4、CO、CnHm含量增加,CO2含量减少。③随着ER的增大,可燃气体尤其是CO的浓度不断降低,CO2含量不断增加;炉内平均温度、气体产率以及碳转化率均逐渐增大;燃气热值和燃气中焦油质量浓度逐渐减小;气化效率则呈现先增大后减小的变化趋势。④当原料含水量<9%、原料粒径<4mm以及ER在0.25~0.27时,气化效率较高,具有较好气化特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号