首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
针对750mm×450mm×120mm异形坯,使用有限元软件建立了铸坯在结晶器内的传热、凝固、收缩及异形坯结晶器铜板热力耦合分析模型。在分析拉速对铸坯收缩、结晶器铜板温度及其变形的影响的基础上,确定了异形坯结晶器铜板的参考锥度,为异形坯结晶器的设计提供参考。  相似文献   

2.
王挺  杨军 《热加工工艺》2012,41(3):44-46,49
连铸结晶器内铸坯的凝固行为直接影响着铸坯质量。为了清楚的认识结晶器内铸坯的凝固过程,建立了二维圆坯结晶器内钢水凝固传热及弹塑性应力瞬态分析模型,基于商业有限元软件ANSYS的直接耦合法模拟计算了圆坯在结晶器冷却过程中的温度及应力分布、坯壳厚度和收缩量。模拟结果表明:圆坯出结晶器坯壳厚度为15.5mm,边界收缩量为0.5mm,圆坯表层处于压缩状态,而内部处于拉伸状态。  相似文献   

3.
简要介绍结晶器锥度的作用,并且对方坯及圆坯结晶器锥度设计的原则进行分析,最后以测量方坯及圆坯结晶器内腔尺寸数据为基础,分析结晶器锥度在生产过程中存在的问题.  相似文献   

4.
为有效防止漏钢事故的发生,降低铸坯与结晶器之间的摩擦力,改善铸坯与结晶器之间的润滑状况,本文研究了异型坯结晶器振动参数对铸坯摩擦力的影响。利用VB软件建立了异型坯连铸结晶器振动参数模型和固液两态摩擦力计算模型,分析了在不同的振动参数条件下,铸坯与结晶器之间摩擦力的变化规律,以期找到摩擦力最小的异型坯结晶器振动参数,为改善铸坯表面质量提供理论依据。  相似文献   

5.
《铸造技术》2017,(11):2753-2756
采用ANSYS有限元软件,以方坯连铸结晶器为研究对象,基于节点温度传递方法、利用ANSYS接触分析技术建立方坯连铸结晶器三维瞬态传热有限元模型,分析了结晶器内铸坯和结晶器铜壁的三维温度场及结晶器内铸坯坯壳分布规律。结果表明,弯月面区域铜壁温度较低,上口接近水缝内冷却水温度;弯月面下50 mm处结晶器铜壁温度最高,达到157℃;模型计算所得结晶器铜管高温区域形状与实际生产中下线铜管高温过烧区域形状基本一致;铸坯表面偏离角部30 mm处角部影响消失,铸坯表面温度趋于一致。  相似文献   

6.
圆坯连铸结晶器传热的反算法   总被引:3,自引:0,他引:3  
尹合壁  姚曼 《金属学报》2005,41(6):638-644
基于圆坯连铸结晶器实测温度数据,建立了结晶器传热反问题数学模型,通过确定结晶器和铸坯之间局部热阻大小及其分布,计算出结晶器热流场和坯壳厚度,且分析了结晶器热流分布特征和铸坯凝固状态,并比较两者之间的关系.计算结果准确地反映了实际生产过程中沿结晶器周向非均匀传热特征,为将数值模拟技术应用于连铸凝固过程监控和“可视化结晶器”技术提供了可借鉴的实用方法.  相似文献   

7.
顾维 《钢管》1993,(6):44-44
<正> 5 水平连铸坯的质量钢水在水平连铸结晶器中凝固时,初生坯壳的形成过程如图22所示。随着前一拉坯周期的结束和新的拉坯周期开始,已形成的凝固坯壳沿着拉坯方向脱离分离环,此时新的钢水进入结晶器。在分离环和结晶器交界处的钢水,受到结晶器、  相似文献   

8.
角部表面纵裂和偏离角裂纹是小方坯连铸中的常见缺陷。通过建立小方坯连铸结晶器内铸坯与铜管热-力耦合有限元模型,研究了不同拉速条件下小方坯在结晶器内的热-力学行为。计算分析了拉速、钢水过热度和结晶器锥度等工艺因素对结晶器内坯壳温度分布和塑性应变的影响。结果表明,铸坯角部纵裂和偏离角裂纹容易在结晶器下部发生;提高拉速、降低钢水过热度、采用多锥度结晶器均有利于降低亚包晶钢坯壳凝固前沿偏离角区域的拉应变及其裂纹倾向。一定条件下,高拉速有利于改善结晶器区域坯壳厚度和温度的均匀性、降低亚包晶钢小方坯连铸结晶器内常见裂纹的发生倾向。  相似文献   

9.
拉速液位与结晶器出钢温度的关系研究   总被引:2,自引:0,他引:2  
乔国林  童朝南  孙一康 《铸造技术》2005,26(10):906-909
结晶器液位和铸坯拉速可直接影响结晶器内钢液温度.本文基于数值模拟和钢液凝固机理,建立起结晶器内钢液液位和铸坯拉速对其出钢口处钢液截面平均温度和坯壳温度的制约关系.仿真结果表明,所建立的关系模型能够反映结晶器出钢口处坯壳表面温度的动态变化,及间接地预知坯壳厚度目的.  相似文献   

10.
通过分析连铸大断面矩形坯管式结晶器特点,对结晶器特性参数、冷却参数和足辊结构关键技术优化设计,提高结晶器铜管使用寿命,避免铸坯鼓肚和漏钢,提高连铸坯质量。  相似文献   

11.
梁启华  宋满堂  王海峰 《连铸》2014,33(1):45-48
介绍了本钢特钢采用235mm×265mm连铸坯生产的40Cr、40CrMn等钢种,生产(100~130)mm过程出现批量纵裂纹缺陷;研究了钢材、连铸坯裂纹形成机制,明确了钢材纵裂纹是由于连铸过程二冷水冷却不均匀,连铸坯产生皮下裂纹,加热后皮下裂纹扩展到表面所致;得出了通过改善水质,防止喷嘴堵塞,加强连铸坯缓冷,降低加热炉预热段温度等技术措施,可有效控制铸坯裂纹,解决了钢材纵裂纹缺陷。  相似文献   

12.
佟立军 《连铸》2013,32(3):12-14
阐述目前采用结晶器振动的连铸生产方式的局限性和其存在的问题,分析了铸坯的缺陷种类和其产生的原因。介绍新开发的非振动式结晶器的原理及其优越性,介绍了如何用非振动式结晶器生产高质量的圆坯、大圆坯及中空管坯的方法。  相似文献   

13.
为了研究出脱方和表面裂纹对铸坯质量的影响情况,通过理论及生产实践,采用了改善保护渣与钢种的匹配情况、调节结晶器水缝间距和优化二冷工序的方法,并比较了不同大R角铜管对表面裂纹的影响,优化设计了结晶器,从而抑制铸坯脱方和表面裂纹。结果表明,在进行大R角铜管对220方坯表面质量优化实践中,合理控制脱方诱因以及有效控制铸坯表面裂纹可以稳定提升铸坯质量。  相似文献   

14.
张江山  李京社  杨树峰 《轧钢》2014,31(6):28-30
本文对方坯轧制圆钢过程中铸坯表面划伤演变规律进行了工业试验研究。首先统计了某钢厂常见的铸坯划伤类型,然后选取特征划伤铸坯进行轧制跟踪,最后对相应的圆钢进行酸洗和测量。结果表明:铸坯表面深度较浅的划伤经轧制后不会导致圆钢的表面缺陷;较深的划伤则会在圆钢表面形成三角口型的直线型裂纹,该类裂纹深度最大可达1.9 mm,呈间断性地分布在整个圆钢上,裂纹处的金相检测发现裂纹四周有明显的脱碳现象。  相似文献   

15.
Cr12MoV环形模具在回火出炉时,发现坯料存在周向裂纹.采用金相检查、化学成分分析、硬度检测等手段对模具开裂原因进行分析.结果表明:模具热处理裂纹属于淬火裂纹,产生的主要原因是坯料淬火过程中油淬时间过长,零件完全淬透,在较大的淬火应力作用下,造成开裂;其次,坯料外缘周向环槽尖角处R角较小,存在较大的应力集中,在一定程...  相似文献   

16.
针对双流板坯连铸机提拉速至1.4~1.5 m/min后,铸坯角部裂纹发生率升高的问题,通过对纵裂试样进行化学成分分析,对纵裂处进行金相显微镜组织观察、扫描电镜及能谱分析,同时结合水模拟试验对角部裂纹的形成机理进行研究。结果表明,裂纹两侧有大量氧化圆点,纵裂在结晶器内产生;通过对结晶器冷却水水量进行优化、控制合理的结晶器倒锥度及结晶器通钢量等措施,减少了连铸坯角部纵裂现象的发生。  相似文献   

17.
在实验室立式连铸机上对碳素结构钢Q235B进行了电磁软接触连铸实验,测量了结晶器内磁场分布和Sn--Pb--Bi合金熔体弯月面形状. 结果表明,采用电磁软接触连铸技术, 可以显著改善铸坯表面质量; 当电源功率达到最佳值时, 振痕完全受到抑制, 铸坯表面光洁; 但当电源功率过大时,铸坯表面出现波浪形振痕. 分析认为, 铸坯表面质量得到改善是高频电磁场的Lorentz力效应和Joule热效应共同作用的结果;当电源功率过大时, 分瓣结晶器 内的磁场分布不均匀,沿结晶器周向呈波浪形分布, 加之钢水液面波动也更加剧烈,因此在铸坯表面产生波浪形振痕.  相似文献   

18.
刘亮 《连铸》2022,41(3):51-55
针对大方坯含硫钢表面纵裂纹问题,对裂纹缺陷进行了金相、能谱观察,发现纵裂纹在铸坯出结晶器后发生;通过高温热塑性测试和组织析出区间的确定,分析了硫加入对钢的高温热塑性和组织析出区间的影响,确认在900 ℃以下第三脆性区间,奥氏体晶界形成的先共析铁素体弱化了晶界强度,在热应力、组织应力、机械矫直应力的作用下发生晶界开裂是导致含硫钢表面纵裂纹的根本原因。在此基础上开展了保护渣优化、二冷区改造、铸坯加热和堆冷过程保温等工艺研究。研究结果表明,提高保护渣碱度、降低保护渣熔点和黏度、延长二冷区长度、规范加热和堆冷工艺,大方坯含硫钢铸坯表面纵裂纹得到了较好控制,因纵裂纹导致的圆钢钢质原因修磨率从20%降低到5%以下。  相似文献   

19.
通过生产数据统计和现场跟踪试验等手段,分析了浇次第1炉保护渣性能对宽板坯表面纵裂纹的影响。探讨了安钢宽板坯浇次第1炉表面纵裂纹产生的原因,并提出有效的防治纵裂纹产生的措施。  相似文献   

20.
在工艺条件不适当时,45钢连铸坯在高温下会产生内部裂纹,当压延比近于4时,裂纹即可焊合。而富集在裂纹上的夹杂物和偏析元素,则被变形并沿轧制方向分散。当这种分散程度不太大时,酸洗后会在那里腐蚀出和裂纹形状相似的沟槽。这种缺陷对纵向力学性能没有影响,但使横向的塑性下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号