首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, we consider the reliable broadcast and multicast lifetime maximization problems in energy‐constrained wireless ad hoc networks, such as wireless sensor networks for environment monitoring and wireless ad hoc networks consisting of laptops or PDAs with limited battery capacities. In packet loss‐free networks, the optimal solution of lifetime maximization problem can be easily obtained by tree‐based algorithms. In unreliable networks, we formulate them as min–max tree problems and prove them NP‐complete by a reduction from a well‐known minimum degree spanning tree problem. A link quality‐aware heuristic algorithm called Maximum Lifetime Reliable Broadcast Tree (MLRBT) is proposed to build a broadcast tree that maximizes the network lifetime. The reliable multicast lifetime maximization problem can be solved as well by pruning the broadcast tree produced by the MLRBT algorithm. The time complexity analysis of both algorithms is also provided. Simulation results show that the proposed algorithms can significantly increase the network lifetime compared with the traditional algorithms under various distributions of error probability on lossy wireless links. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Nodes mobility brings flinty challenges to multicast in Mobile ad hoc Networks (MANETs). To track nodes mobility, flooding messages are widely used for data delivery structure construction and maintenance in many multicast protocols. These periodic flooding messages significantly consume network resources, such as energy and bandwidth, and result in network collisions. To release data delivery structure maintenance onus, profited from GPS location service, a number of stateless location based multicast protocol were proposed, where a destination list is encapsulated into each data packet for data packet orientation. However, due to data packet capability limitation, the way of encapsulating a destination list in each data packet header restricts the protocol scalability. To solve the scalability issue of multicast protocols, we propose a Scalable Location Guide Overlay Multicast (SLGOM) for MANETs. Analysis and simulation results show that SLGOM achieves high performance in large multicast group and significantly improves the scalability of stateless multicast with respect to group size. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Security considerations in ad hoc sensor networks   总被引:1,自引:0,他引:1  
In future smart environments, ad hoc sensor networks will play a key role in sensing, collecting, and disseminating information about environmental phenomena. As sensor networks come to be wide-spread deployment, security issues become a central concern. So far, the main research focus has been on making sensor networks feasible and useful, and less emphasis has been placed on security. This paper analyzes security challenges in wireless sensor networks and summarizes key issues that need be solved for achieving security in an ad hoc network. It gives an overview of the current state of solutions on such key issues as secure routing, prevention of denial-of-service, and key management service.  相似文献   

4.
Dario  Marco   《Ad hoc Networks》2006,4(6):724-748
Ad hoc networks are collections of mobile nodes communicating using wireless media without any fixed infrastructure. Existing multicast protocols fall short in a harsh ad hoc mobile environment, since node mobility causes conventional multicast trees to rapidly become outdated. The amount of bandwidth resource required for building up a multicast tree is less than that required for other delivery structures, since a tree avoids unnecessary duplication of data. However, a tree structure is more subject to disruption due to link/node failure and node mobility than more meshed structures. This paper explores these contrasting issues and proposes PPMA, a Probabilistic Predictive Multicast Algorithm for ad hoc networks, that leverages the tree delivery structure for multicasting, solving its drawbacks in terms of lack of robustness and reliability in highly mobile environments. PPMA overcomes the existing trade-off between the bandwidth efficiency to set up a multicast tree, and the tree robustness to node energy consumption and mobility, by decoupling tree efficiency from mobility robustness. By exploiting the non-deterministic nature of ad hoc networks, the proposed algorithm takes into account the estimated network state evolution in terms of node residual energy, link availability and node mobility forecast, in order to maximize the multicast tree lifetime, and consequently reduce the number of costly tree reconfigurations. The algorithm statistically tracks the relative movements among nodes to capture the dynamics in the ad hoc network. This way, PPMA estimates the node future relative positions in order to calculate a long-lasting multicast tree. To do so, it exploits the most stable links in the network, while minimizing the total network energy consumption. We propose PPMA in both its centralized and distributed version, providing performance evaluation through extensive simulation experiments.  相似文献   

5.
Yunjung  Mario  Katia   《Ad hoc Networks》2004,2(2):171-184
In this paper, we study a new multicast paradigm for large scale mobile ad hoc networks, namely team multicast. In team multicast the multicast group does not consist of individuals, rather, of member teams. For example a team may be a special task force that is part of a search and rescue operation. The message must be broadcast to each member of each team in the multicast group. Team multicast is very common in ad hoc networks set up to accomplish some collective tasks, such as for emergency recovery or battlefield applications. A key problem in several of the above applications is scalability to large membership size as well as network size. Our approach exploits motion affinity (more precisely, team members’ coordinated motion) which is typically present when the set of nodes has a commonality of interests. Each team can be viewed as a logical subnet. Within the team a landmark node is dynamically elected. The addresses of and the paths to the chosen landmarks are propagated into the whole network so that a source of a multicast group can route to the landmark of a subscribed team.Our protocol, Multicast-enabled Landmark Ad Hoc Routing (denoted as M-LANMAR), uses tunneling from multicast sources to each landmark of the subscribed team and restricted flooding within the motion group. Simulation study shows that M-LANMAR provides efficient and reliable multicast compared with the application of a “flat” multicast scheme (e.g., ODMRP) that does not exploit team coordinated motion.This paper contains three contributions: a new model for team multicast, with the definition of team dynamics (join, merge, split); the exploitation of team mobility and of landmarks in order to achieve scalable multicast, and; the implementation and performance evaluation of M-LANMAR, a landmark based team multicast scheme.  相似文献   

6.
As group-oriented services become the focal point of ad hoc network applications, securing the group communications becomes a default requirement. In this paper, we address the problem of group access in secure multicast communications for wireless ad hoc networks. We argue that energy expenditure is a scarce resource for the energy-limited ad hoc network devices and introduce a cross-layer approach for designing energy-efficient, balanced key distribution trees to perform key management. To conserve energy, we incorporate the network topology (node location), the “power proximity” between network nodes and the path loss characteristics of the medium in the key distribution tree design. We develop new algorithms for homogeneous as well as heterogeneous environments and derive their computational complexity. We present simulation studies showing the improvements achieved for three different but common environments of interest, thus illustrating the need for cross-layer design approaches for security in wireless networks. Loukas Lazos received the B.S. and M.S. degrees from the Electrical Engineering Department, National Technical University of Athens, Athens, Greece, in 2000 and 2002, respectively. He is currently working towards the Ph.D. degree in the Electrical Engineering Department, University of Washington, Seattle. His current research interests focus on cross-layer designs for energy-efficient key management protocols for wireless ad-hoc networks, as well as secure localization systems for sensor networks. Radha Poovendran received the Ph.D. degree in electrical engineering from the University of Maryland, College Park, in 1999. He has been an Assistant Professor in the Electrical Engineering Department, University of Washington, Seattle, since September 2000. His research interests are in the areas of applied cryptography for multiuser environment, wireless networking, and applications of information theory to security. Dr. Poovendran is a recipient of the Faculty Early Career Award from the National Science Foundation (2001), Young Investigator Award from the Army Research Office (2002), Young Investigator Award from the Office of Naval Research (2004), and the 2005 Presidential Early Career Award for Scientists and Engineers, for his research contributions in the areas of wired and wireless multiuser security.  相似文献   

7.
Energy conservation is a critical issue in wireless ad hoc networks since batteries are the only limited-life energy source to power the nodes. One major metric for energy conservation is to route a communication session along the routes which require the lowest total energy consumption. Most recent algorithms for the MEM (Minimum Energy Multicast) problem considered energy efficiency as the ultimate objective in order to increase longevity of such networks. However, the introduction of real-time applications has posed additional challenges. Transmission of video and imaging data requires both energy and QoS-aware routing in order to ensure efficient usage of the networks. In this paper, we only consider “bandwidth” as the QoS in TDMA-based wireless ad hoc networks that use omni-directional antennas and have limited energy resources. We present a constraint formulation model for the QoS-MEM (QoS-aware Minimum Energy Multicast) problem in terms of mixed integer linear programming (MILP), which can be used for an optimal solution of the QoS-MEM problem. Experiment results show that in a typical static ad hoc network with 20 nodes, the optimal solutions can always be solved in a timely manner.  相似文献   

8.
Toby  Ying   《Ad hoc Networks》2009,7(8):1551
Many routing protocols and applications developed for ad hoc networks rely on location information of participating nodes. The exposure of such information, however, presents significant safety threats to the networks. In this paper, we investigate the problem of preventing an adversary from locating (and thus destroying) nodes based on their location information they disclose in communications. Our idea is to reduce location resolution to achieve a desired level of safety protection. We define the safety level of a geographic region to be the ratio of its area and the number of nodes inside it. The higher safety level a region has, the less attractive for an adversary to search over it for the nodes. When a node has to disclose its location, it can compute a cloaking box that meets a desired level of safety requirement and report that as its current location information. To implement this simple idea, there are several challenges. First, each cloaking box must be as small as possible in order to minimize the impact of reduced location resolution on the efficiency of network operating and applications. Second, nodes must be able to compute their cloaking boxes without having to reveal their accurate position. Finally, given a sequence of cloaking boxes, they must not be correlated to refine an area whose safety level is less than the requirement. Our research addresses these challenges with cost-effective solutions in the context of both stationary and mobile ad hoc networks. We evaluate the performance of our techniques through both mathematical analysis and simulation. In addition, we present a new geographic routing protocol which can work with blurred location information and evaluate the impact of location resolution reduction on the performance of this technique.  相似文献   

9.
The deployment of infrastructure-less ad hoc networks is suffering from the lack of applications in spite of active research over a decade. This problem can be solved to a certain extent by porting successful legacy Internet applications and protocols to the ad hoc network domain. Session Initiation Protocol (SIP) is designed to provide the signaling support for multimedia applications such as Internet telephony, Instant Messaging, Presence etc. SIP relies on the infrastructure of the Internet and an overlay of centralized SIP servers to enable the SIP endpoints discover each other and establish a session by exchanging SIP messages. However, such an infrastructure is unavailable in ad hoc networks. In this paper, we propose two approaches to solve this problem and enable SIP-based session setup in ad hoc networks (i) a loosely coupled approach, where the SIP endpoint discovery is decoupled from the routing procedure and (ii) a tightly coupled approach, which integrates the endpoint discovery with a fully distributed cluster based routing protocol that builds a virtual topology for efficient routing. Simulation experiments show that the tightly coupled approach performs better for (relatively) static multihop wireless networks than the loosely coupled approach in terms of the latency in SIP session setup. The loosely coupled approach, on the other hand, generally performs better in networks with random node mobility. The tightly coupled approach, however, has lower control overhead in both the cases. This work was partially done while the author was a graduate student in CReWMaN, University of Texas at Arlington. Dr. Nilanjan Banerjee is a Senior Research Engineer in the Networks Research group at Motorola India Research Labs. He is currently working on converged network systems. He received his Ph.D. and M.S. in computer science and engineering from University of Texas at Arlington. He received his B.E. degree in the same discipline from Jadavpur University, India. His research interests include telecom network architectures and protocols, identity management and network security, mobile and pervasive computing, measures for performance, modeling and simulation, and optimization in dynamic systems. Dr Arup Acharya is a Research Staff Member in the Internet Infrastructure and Computing Utilities group at IBM T.J. Watson Research Center and leads the Advanced Networking micropractice in On-Demand Innovation Services. His current work includes SIP-based services such as VoIP, Instant Messaging and Presence, and includes customer consulting engagements and providing subject matter expertise in corporate strategy teams. Presently, he is leading a IBM Research project on scalability and performance of SIP servers for large workloads. In addition, he also works on different topics in mobile/wireless networking such as mesh networks. He has published extensively in conferences/journals and has been awarded seven patents. Before joining IBM in 2000, he was with NEC C&C Research Laboratories, Princeton. He received a B.Tech degree in Computer Science from the Indian Institute of Technology, Kharagpur and a PhD in Computer Science from Rutgers University in 1995. Further information is available at Dr. Sajal K. Das is a Professor of Computer Science and Engineering and also the Founding Director of the Center for Research in Wireless Mobility and Networking (CReWMaN) at the University of Texas at Arlington (UTA). His current research interests include sensor networks, resource and mobility management in wireless networks, mobile and pervasive computing, wireless multimedia and QoS provisioning, wireless internet architectures and protocols, grid computing, applied graph theory and game theory. He has published over 400 research papers in these areas, holds four US patents in wireless internet and mobile networks. He received Best Paper Awards in IEEE PerCom’06, ACM MobiCom’99, ICOIN’02, ACM MSwiM’00 and ACM/IEEE PADS’97. He is also recipient of UTA’s Outstanding Faculty Research Award in Computer Science (2001 and 2003), College of Engineering Research Excellence Award (2003), the University Award for Distinguished record of Research (2005), and UTA Academy of Distinguished Scholars Award (2006). He serves as the Editor-in-Chief of Pervasive and Mobile Computing journal, and as Associate Editor of IEEE Transactions on Mobile Computing, ACM/Springer Wireless Networks, IEEE Transactions on Parallel and Distributed Systems. He has served as General or Program Chair and TPC member of numerous IEEE and ACM conferences. He is a member of IEEE TCCC and TCPP Executive Committees.  相似文献   

10.
In this paper, we discussed the issues of QoS multicast routing in cognitive radio ad hoc networks. The problem of our concern was: given a cognitive radio ad hoc network and a QoS multicast request, how to find a multicast tree so that the total bandwidth consumption of the multicast is minimized while the QoS requirements are met. We proposed two methods to solve it. One is a two‐phase method. In this method, we first employed a minimal spanning tree‐based algorithm to construct a multicast tree and then proposed a slot assignment algorithm to assign timeslots to the tree links such that the bandwidth consumption of the tree is minimized. The other is an integrated method that considers the multicast routing together with the slot assignment. Extensive simulations were conducted to show the performance of our proposed methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
All existing routing protocols of Mobile Ad Hoc networks (MANET) assume that IP addresses of hosts are already configured before they join the network. In traditional schemes, this task is delegated to the dynamic host configuration protocol (DHCP [R. Droms, Dynamic host configuration protocol, RFC 2131, March 1997]), which allots an IP address to each requesting node. However, this process can not be applied in the context of MANET because of the lack of infrastructure and the great mobility that characterize them. A manual management of the addresses can be considered as long as the number of nodes remains reasonable. On the other hand, it is not possible any more since the network reaches a certain size. Some works proposed solutions to allow an automatic configuration of the nodes, i.e. without human intervention. Unfortunately these processes, often inspired of the traditional wired networks, are not always well adapted to MANET and appear relatively greedy concerning for example the delay, the address space or the bandwidth. Moreover, they apply only to ideal networks in which all nodes can trust each other. In this manner, they do absolutely not consider the security aspects and are thus not adapted to a real use in potentially hostile environment. In this paper, we propose a node auto-configuration scheme which uses the buddy system technique to allocate the addresses, as well as an algorithm allowing to authenticate the participants inside the network.  相似文献   

12.
在Ad hoc网络中保证组播通信的可靠性要面对Ad hoc网络高误码率、带宽受限、节点能量有限和拓扑结构频繁变化等技术挑战。该文将协同的思想引入到组播丢失恢复设计中,设计了新的基于协同的可靠组播丢失恢复算法(CoreRM)。根据各个节点经历的不同丢失情况,通过自适应选择本地恢复、全局恢复或发送端恢复,分布式地处理整个网络的丢失恢复。CoreRM还设计了恢复路径缓存、NAK抑制机制,以及源路由数据包(SPM)发送机制来应对Ad hoc网络中的拓扑变化。性能分析和NS2的仿真实验表明相对于UDP和PGM可靠组播通信,CoreRM算法可以在网络吞吐量和丢失恢复延时方面有显著性能改善。  相似文献   

13.
Jorjeta G.  David B.   《Ad hoc Networks》2006,4(3):303-325
Unidirectional links in an ad hoc network can result from factors such as heterogeneity of receiver and transmitter hardware, power control or topology control algorithms, or differing sources of interference or jamming. Previously proposed metrics for evaluating the difficulty of a unidirectional scenario are limited in scope and are frequently misleading. To be able to analyze ad hoc network routing protocol behavior in a complex networking environment, it is not sufficient to merely assign a single level of difficulty to a unidirectional network scenario; the many interrelated routing characteristics of these scenarios must be understood. In this paper, we develop a set of metrics for describing these characteristics, for example for characterizing routing scenarios in simulations, analysis, and testbed implementations. Based on these metrics, we perform a detailed simulation analysis of the routing characteristics of the three most common simulation models for generating unidirectional links in ad hoc networks: the random-power model, the two-power model, and the three-power model. Our findings enable protocol designers to better choose a set of network scenarios and parameters that truly explore a wide range of a routing protocol’s behaviors in the presence of unidirectional links, and to better understand the complex interplay between routing mechanisms and network conditions.  相似文献   

14.
In this paper, we propose a Load‐Balancing and Coding‐Aware Multicast (LCM) protocol for mobile ad hoc networks. In LCM protocol, a new route metric named Expected Transmission Time with Coding and Load Balancing (ETTCL) is presented at first, aiming at effectively selecting the path not only that has the possible coding opportunity but also where overflow due to network overload can be prevented. Then, we describe the route discovery phase by constructing the node‐disjoint multicast tree on the basis of ETTCL and employ network coding to encode the data flows for route maintenance. The effectiveness of LCM protocol is simulated and analyzed by NS‐2, which shows that this protocol has good performance in reducing average end‐to‐end delay and control overhead and can improve packet delivery ratio compared with the existing protocol. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Transmission-scheduling protocols can support contention-free link-level broadcast transmissions and delay sensitive traffic in mobile, multiple-hop packet radio networks. Use of transmission-scheduling protocols, however, can be very inefficient in mobile environments due to the difficulty in adapting transmission schedules. The paper defines a new adaptive and distributed protocol that permits a terminal to adapt transmission assignments to changes in topology using information it collects from its local neighborhood only. Because global coordination among all the terminals is not required and changes to transmission assignments are distributed to nearby terminals only, the protocol can adapt quickly to changes in the network connectivity. The two key parameters that affect the ability of the protocol to adapt to changes in connectivity are the rate of connectivity changes and the number of terminals near the connectivity changes. Using simulation, we determine the ranges for these parameters for which our adaptive protocol can maintain collision-free schedules with an acceptable level of overhead. The stability of the protocol is also characterized by showing that the protocol can quickly return to a collision-free transmission schedule after a period of very rapid changes in connectivity. Our channel-access protocol does not require a contention-based random-access phase to adapt the transmission schedules, and thus its ability to adapt quickly does not deteriorate with an increase in the traffic load.  相似文献   

16.
Min  Srikanth V.  Michalis   《Ad hoc Networks》2006,4(2):283-300
Application layer multicasting has emerged as an appealing alternative to network layer multicasting in wireline networks. Here, we examine the suitability of application layer multicast in ad hoc networks. To this effect, we propose a flexible receiver-driven overlay multicast protocol which we call Application Layer Multicast Algorithm (ALMA). ALMA constructs an overlay multicast tree in a dynamic, decentralized and incremental way. First, ALMA is receiver-driven: the member nodes find their connections according to their needs. Second, it is flexible, and thus, it can satisfy the performance goals and the needs of a wide range of applications. Third, it is highly adaptive: it reconfigures the tree in response to mobility or congestion. In addition, our protocol has the advantages of an application layer protocol: (a) simplicity of deployment, (b) independence from lower layer protocols, and (c) capability of exploiting features such as reliability and security that may be provided by the lower layers. Through extensive simulations, we show that ALMA performs favorably against the currently best application layer and network layer protocols. In more detail, we find that ALMA performs significantly better than ODMRP, a network layer, for small group sizes. We conclude that the application layer approach and ALMA seem very promising for ad hoc multicasting.  相似文献   

17.
Hend   《Ad hoc Networks》2006,4(1):138-146
Smart antennas have the advantage over traditional omnidirectional antennas of being able to orientate radio signals into the concerned directions in either transmission mode or in reception mode. Since the omnidirectional antenna use in broadcasting over the whole network is the source of an excessive redundancy of broadcast packet receptions within each node, we suggest using smart antennas to improve the medium usage in the case of broadcasting. We propose to adapt a current broadcast protocol to smart antenna applications and present two smart antenna broadcast approaches. We also present a comparative performance study between omnidirectional and smart antennas when broadcasting. We show that we can improve battery power utilisation and bandwidth usage with smart antennas.  相似文献   

18.
An ad hoc network is a multihop wireless communication network supporting mobile users. Network performance degradation is a major problem as the network becomes larger. Clustering is an approach to simplify the network structure and thus alleviate the scalability problem. One method that has been proposed to form clusters is to use weakly-connected dominating sets [Y.P. Chen, A.L. Liestman, Approximating minimum size weakly-connected dominating sets for clustering mobile ad hoc networks, in: The Third ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc’02), 2002, pp. 165–172; Y.P. Chen, A.L. Liestman, A zonal algorithm for clustering ad hoc networks, International Journal of Foundations of Computer Science 14(2) (2003) 305–322]. Here, we present a zonal distributed algorithm to maintain weakly-connected dominating sets as the network structure changes. When the zones are small, the algorithm is essentially localized; when the zones are large, it behaves more globally. The size of the weakly-connected dominating set obtained also varies depending on the choice of zone size, with larger zones generally resulting in smaller weakly-connected dominating sets. Experiments provide evidence that this maintenance algorithm keeps the size of the weakly-connected dominating set approximately the same as its initial size and does not compromise the network connectivity.  相似文献   

19.
The mobile ad hoc network (MANET) has recently been recognized as an attractive network architecture for wireless communication. Reliable broadcast is an important operation in MANET (e.g., giving orders, searching routes, and notifying important signals). However, using a naive flooding to achieve reliable broadcasting may be very costly, causing a lot of contention, collision, and congestion, to which we refer as the broadcast storm problem. This paper proposes an efficient reliable broadcasting protocol by taking care of the potential broadcast storm problem that could occur in the medium-access level. Existing protocols are either unreliable, or reliable but based on a too costly approach. Our protocol differs from existing protocols by adopting a low-cost broadcast, which does not guarantee reliability, as a basic operation. The reliability is ensured by additional acknowledgement and handshaking. Simulation results do justify the efficiency of the proposed protocol.  相似文献   

20.
In this paper we present a mobility model for ad hoc networks consisting of human-operated nodes that are deployed in obstacle-constrained environments. According to this model, the network nodes move around the obstacles in a way that resembles how humans bypass physical obstructions. A recursive procedure is executed by each node at its current position to determine the next intermediate destination point until the final destination point is reached. The proposed mobility model is validated using real-life trace data and studied using both mathematical analysis and simulations. Furthermore, the model is extended to incorporate several operational aspects of ad hoc networks in mission critical scenarios, where it is best applicable. These extensions include hierarchical node organization, distinct modes of node activity, event-based destination selection and impact of the physical obstacles on signal propagation. The model is implemented as an add-on module in Network Simulator (ns-2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号