首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
以椰壳炭化料为原料,KOH为活化剂,在不同工艺条件下制备了超级电容器用活性炭电极材料。考察了碱炭比、活化温度和活化时间对活性炭孔隙结构及其用作电极材料的比电容的影响。结果表明,在KOH与椰壳炭化料质量比为4:1,活化温度800℃,活化时间60 min的条件下,可制得比表面积2891 m2/g,总孔容积1.488 cm3/g,中孔率73.6%,比电容达235 F/g的优质活性炭电极材料。  相似文献   

2.
热解活化法制备高吸附性能椰壳活性炭   总被引:1,自引:1,他引:0  
以椰壳为原料,采用高温直接热解活化法制备高吸附性能活性炭。研究了活化温度、活化时间对活性炭吸附性能的影响。研究结果表明,活化温度为 900 ℃,热解活化时间为 8 h,升温速率为 10 ℃/min,制得碘吸附值为 1 628.54 mg/g,亚甲基蓝吸附值为 375 mg/g 的高吸附性能椰壳活性炭,得率为 9.41 %。氮气吸附实验结果表明,该活性炭比表面积 1 723 m2/g、总孔容积 0.87 cm3/g、微孔容积 0.68 cm3/g、中孔容积0.18 cm3/g、平均孔径 2.03 nm。热解活化制备的椰壳活性炭样品性能优于市售水蒸气法椰壳净水活性炭国家标准。  相似文献   

3.
水蒸气活化法制备椰壳活性炭的孔结构特征   总被引:2,自引:0,他引:2  
以农林废弃物椰壳在600℃炭化2h后的炭化料为原料,以水蒸气为活化剂,研究了活化温度、活化时间、水蒸气用量对活性炭的比表面积、微孔容积和收率等的影响。结果表明:椰壳炭化料的比表面积仅为185m^2/g,且以中孔为主。在活化过程中,通过提高活化温度和水蒸气用量缩短了活化时间,扩宽了孔径;当水蒸气用量和活化温度较为适宜时,延长活化时间,有利于微孔的形成。活性炭的比表面积、总孔容积、微孔容积可达:1465m^2/g,0.9703cm^3/g,0.7519cm^2/g。并通过非定域密度函数理论(NLDFT)对活性炭的孔径分布进行了表征。  相似文献   

4.
CO_2活化制备椰壳基活性炭   总被引:6,自引:1,他引:6  
以600℃下炭化2h后的椰壳炭化料为原料,通过CO2活化制备椰壳基活性炭,研究了活化温度、活化时间、CO2流量对活性炭得率及其吸附性能的影响。同时测定了该活性炭的N2吸附等温线,通过非定域化密度函数理论表征活性炭孔径分布。在适宜的工艺条件,所制备活性炭的得率为24%,碘吸附值为1428mg/g,其比表面积、总孔容积、微孔容积分别可达:1653m2/g,1.045cm3/g,0.8582cm3/g,且以2nm以下的微孔为主,产品性能达到了双层电容器专用活性炭(LY/T1617—2004)标准。  相似文献   

5.
以重质沥青为原料,采用空气热聚合法-物理活化法协同制备重质沥青基活性炭。通过正交设计法系统研究了预氧化升温速率、恒温温度、恒温时间、活化时间、活化温度、炭化时间、炭化温度等因素对重质沥青基活性炭的影响。利用扫描电镜、碘吸附值等对活性炭的表面形态及吸附特性进行表征。结果表明,空气热聚合法-物理活化法协同制备重质沥青基活性炭的优化条件为:预氧化升温速率为2℃/min、预氧化恒温温度为300℃、预氧化恒温时间为1 h、炭化温度为500℃、炭化时间为120 min、活化温度为850℃、活化时间为90 min,该工艺条件下制备的活性炭具有较为发达的微孔结构,碘吸附值为689.33 mg/g。  相似文献   

6.
KOH活化丝瓜络制备高比表面积活性炭   总被引:2,自引:0,他引:2       下载免费PDF全文
为了探讨以丝瓜络为原料制备高比表面积活性炭的最佳条件,通过设计正交实验,研究了碱炭比、活化温度、活化时间和升温速率等因素对KOH活化丝瓜络制备活性炭性能的影响。结果表明:KOH活化丝瓜络制备活性炭的最佳条件为:碱炭比为4、活化温度800 ℃,活化时间30 min,升温速率10 ℃/ min。在此条件下制备的活性炭为多孔、非晶型的无定形碳,具有高的比表面积(3545 m2/g)和强的吸附性能,其碘值和亚甲基蓝值分别达到2926 mg/g和528.58 mg/g;为丝瓜络的高值化利用提供了一条有价值的途径。  相似文献   

7.
以废旧棉织物为原料,KOH为活化剂,利用化学活化法制备活性炭。采用XRD、SEM、元素分析仪、比表面积及孔径分析仪、FTIR等对所制备活性炭的结构与性能进行了分析与表征。结果表明:先炭化废旧棉织物,在m(炭化料)∶m(KOH)=1∶1,浸渍时间16 h,活化温度850℃,活化时间50 min的活化条件下,制备的活性炭比表面积为1 368.67 m~2/g,其中,微孔比表面积占BET比表面积的72.05%,总孔容为0.620 8 cm3/g,微孔孔容占总孔容的71.63%,微孔孔径主要分布在0.84~1.30 nm之间;活性炭呈中空纤维状,具有丰富的孔隙结构;碳质量分数高达90.43%;表面官能团主要为羧基、羰基、羟基等亲水性基团。废旧棉织物可作为制备活性炭的原料,所制活性炭性能优良。  相似文献   

8.
以咖啡壳为原料、KOH为化学活化剂制备高性能活性炭,在单因素试验探索活化时间、活化温度和碱炭比对活性炭碘吸附值影响的基础上,运用响应面法进行活化工艺参数优化。通过对模型优化确定最佳工艺参数为活化时间5 min、活化温度950℃和碱炭比(KOH和咖啡壳炭化料质量比,下同)4∶1;该条件下制备的活性炭的碘吸附值为2 214 mg/g(实验值),和预测值(2 209.5 mg/g)基本相符,验证了模型的有效性。  相似文献   

9.
以含碳量高且相对洁净的大庆石油焦为原料,通过 KOH化学活化,制备出比表面积为 2 830 m2/g且具有良好吸附性能的粉状多孔炭.考察了反应时间、反应温度、升温速率和剂料质量比、急冷温度等因素对活化结果的影响.结果表明,当活化温度为 800 ℃,活化时间为 1 h,剂料质量比为 4:1,升温速率为 4 ℃ /min,急冷温度为 500 ℃时活化效果比较理想.  相似文献   

10.
以废旧棉织物为研究对象,选取炭化时间、升温速率和炭化温度3个影响因子,通过正交实验确定活性炭最佳炭化条件,并通过SEM、BET、FTIR等手段对样品进行性能表征分析。实验结果表明,废旧棉织物基活性炭的最佳炭化工艺为炭化温度300℃、升温速率4℃/min、炭化时间50 min,此条件下得到的炭化料出现棒状短纤维,管束蓬松扭曲,并且已经初步形成紧密的碳骨架结构;活性炭样品碘吸附值为1415.27 mg/g,得率为26.13%,比表面积为1679.50 m~2/g,微孔平均孔径为2.96 nm,属于微孔型活性炭。  相似文献   

11.
以气化稻壳炭(GRHC)为原料,KOH为活化剂制备活性炭,研究了不同活化温度和碱炭比对活性炭得率、比表面积、孔径分布以及碘值的影响.利用全自动气体吸附分析仪、X射线衍射仪、傅里叶变换红外光谱仪、扫描电镜等仪器对活性炭的理化性质进行表征,并通过吸附等温线、吸附动力学探讨其对甲基橙的吸附机制.结果表明:活化时间为1h时,随...  相似文献   

12.
以农业废弃物棉秆为原料,采用氢氧化钾活化法制备活性炭,并用于吸附含苯酚废水中的苯酚。棉秆基活性炭的最佳制备条件为棉秆先炭化,以KOH溶液为活化剂,KOH与棉秆炭的质量比(物料比)1.5:1,活化温度800 ℃、活化时间70 min,此条件下制备的棉秆活性炭亚甲基蓝的吸附值为342.33 mg/g,碘吸附值为1 368.65 mg/g,其BET比表面积达到了1 735.94 m2/g,总孔容积0.36 cm3/g,平均孔径2.33 nm。将此活性炭用于吸附苯酚,苯酚质量浓度60 mg/L的50 mL废水中,当pH值为7,吸附时间2 h,活性炭投放量为50 mg时,苯酚去除率最高可达98%。对此吸附过程进行动力学分析,结果表明准二级动力学模型能很好的描述此活性炭吸附苯酚的过程。  相似文献   

13.
以油茶壳为原料,经炭化、KOH活化,制备微孔活性炭。考查了活化温度、活化时间和碱炭比对微孔活性炭碘吸附值和产率的影响,并采用正交试验优化了制备条件。研究结果表明:活化温度800℃、活化时间180 min、碱炭质量比3.5:1时,活性炭的碘吸附值达3 221 mg/g,产率51.2%。采用比表面积孔隙分析仪测定了氮气吸附/脱附等温线,计算得BET比表面积为1 755.72 m2/g,平均孔径为2.15 nm,总孔容为0.328 cm3/g,微孔孔容占总孔容的55.8%;SEM分析可见活性炭表面具有大量孔隙结构;FT-IR分析表明活化促进了—CH3、—OH热解,活性炭中仍保存含氧官能团。  相似文献   

14.
《分离科学与技术》2012,47(5):813-819
Activated carbon preparation from tobacco stems by KOH activation at different activation temperatures and KOH/char mass ratios were investigated in this study. The effects of preparation parameters on activated carbon pore structure, morphometrics, microcrystallinities, and surface functional groups were characterized by N2 adsorption, SEM, XRD, and FTIR technologies, respectively. The optimum preparation condition of activated carbon was activation temperature of 850°C, and KOH/char mass ratio of 2. Under this condition, the BET surface area of 2215 m2/g, and the pore volume of 1.343 cm3/g can be obtained. Prepared activated carbon showed clearly honeycomb holes, and a predominated amorphous structure. With increase of activation temperature and KOH/char mass ratio, decrease of surface oxygen functional group, and aromatization of the carbon structure was found. The activated carbon was subject to PH3 purification, and the maximum PH3 adsorption capacity of 253 mg/g can be realized based on well prepared KOH-AC with modification of 2.5% Cu. It seems that the activated carbon produced from chemical activation of tobacco stem would be an effective and alternative adsorbent for PH3 adsorption because of its high surface area, adsorption capacity, and low cost.  相似文献   

15.
以废弃的辣椒秸秆为原料,KOH为活化剂,制备高比表面积活性炭,研究了碱炭比、活化温度、炭化温度及活化时间对活性炭吸附性能的影响。结果表明,活性炭制备的最佳工艺条件为:碱炭比为3∶1,活化温度为700℃,炭化温度为450℃,活化时间为40 min。在此条件下,制得的活性炭碘吸附值2 356.40 mg/g,亚甲基蓝吸附值41.3 mL/0.1 g,BET比表面积为2 432.135 m2/g,Langmuir比表面积高达3 270.478 m2/g,吸附总孔容为2.064 cm3/g,平均孔径为3.246 nm。SEM和XRD观察发现,辣椒秆活性炭呈不定形态,具有丰富和发达的蜂窝状孔隙结构。  相似文献   

16.
以碱木质素和杉木屑为原料,磷酸为活化剂,制备碱木质素基成型活性炭,考察了碱木质素质量分数、浸渍比、活化温度、活化时间等对活性炭性能的影响。研究结果表明:碱木质素复配杉木屑(碱木质素质量分数50%)后,复配料的表面润湿性显著提高,瞬时水接触角由133.2°(碱木质素)降低至86.6°(复配料);热膨胀系数显著降低,膨胀温度区间的热膨胀系数由2 365μm/(m·℃)(碱木质素)降低至45μm/(m·℃)(复配料)。在最佳工艺条件即碱木质素质量分数50%、浸渍比1.5∶1(纯磷酸与复配料质量比)、活化温度500℃、活化时间90 min下,制备的成型活性炭得率41.76%,碘吸附值1 070 mg/g,亚甲基蓝吸附值255 mg/g,强度90%,比表面积1 646 m2/g,总孔容积为0.795 cm3/g,其中孔径小于5 nm的孔容积占总孔容积的97.2%。  相似文献   

17.
以梧桐锯末为基体、无水K2CO3为活化剂,采用干混合法制备成型活性炭颗粒,通过单因素实验考察盐料质量比、活化温度、活化时间及成型密度对活性炭吸附碘性能的影响,并对其进行了表征. 结果表明,在盐料质量比2.0、活化温度950℃、活化时间80 min、成型密度1.3 g/cm3的条件下,所制成型活性炭对碘的吸附容量达1323.25 mg/g. 成型活性炭具有发达的孔结构,比表面积为1432.59 m2/g,平均孔径为1.70 nm,总孔容为0.772 cm3/g,其中微孔比表面积为1302.75 m2/g,孔容为0.566 cm3/g,微孔率达73.3%.  相似文献   

18.
以榆林某公司的兰炭为原料,KOH粉末为活化剂制备活性炭。通过改变活化过程中时间、温度、炭碱比等因素,从而探究活性炭的碘吸附能力。通过响应曲面优化处理活性炭制备过程中活化因素,从而确定最佳工艺。采用比表面积测定,红外光谱分析,扫描SEM电镜等对活性炭结构及性能表征进行分析结果表明,上述活化条件都会影响活性炭吸附能力和孔隙结构。当活化过程中的温度达到750℃,时间为0.5 h,炭碱比为1:3的时候,KOH的活化效果最佳,所制样品的碘吸附值最大且为1 162.91 mg/g,其BET比表面积可达655.15m2/g,Langmuir比表面积为908.22 m2/g。通过红外分析可知活性炭与预处理兰炭原料红外光谱图走势极其相似,只是活性炭出现了较强的芳基烷基醚C-O伸缩振动峰。通过扫描显微电镜分析可知与原料兰炭相比,活性炭样品组织表面非常粗糙并且有大量的孔隙出现,样品结构非常疏松。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号