首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell differentiation in Dictyostelium results in the formation of two cell types, stalk and spore cells. The stalk cells undergo programmed cell death, whereas spore cells retain viability. The current evidence suggests that stalk cell differentiation is induced by Differentiation Inducing Factor (DIF), while spore cell differentiation occurs in response to cAMP. We have discovered the first developmentally regulated Dictyostelium gene, the glycogen phosphorylase gene 2 (gp2) gene, that can be induced by both DIF-1 and cAMP, suggesting the possibility of a new group of developmentally regulated genes that have DIF-1 and cAMP dual responsiveness. The gp2 gene was found to be expressed in both prestalk/stalk cells and prespore/spore cells. The DIF-1 competence of the gp2 gene required uninterrupted development, whereas the cAMP-competence for the gene required only starvation. Both DIF-1 and cAMP induction of the gene could be inhibited by NH3, a factor that is thought to act as a developmental signal in Dictyostelium. Another developmental signal, adenosine, was found to repress the DIF-1 induction of the gp2 gene. Two introns in the gp2 gene were examined for their involvement in the regulation of the gene, but no regulatory function was detected. A model for the regulation of the gp2 gene during the development is proposed.  相似文献   

4.
Dictyostelium cells express a G-protein-coupled adenylyl cyclase, ACA, during aggregation and an atypical adenylyl cyclase, ACG, in mature spores. The ACG gene was disrupted by homologous recombination. acg- cells developed into normal fruiting bodies with viable spores, but spore germination was no longer inhibited by high osmolarity, a fairly universal constraint for spore and seed germination. ACG activity, measured in aca-/ACG cells, was strongly stimulated by high osmolarity with optimal stimulation occurring at 200 milliosmolar. RdeC mutants, which display unrestrained protein kinase A (PKA) activity and a cell line, which overexpresses PKA under a prespore specific promoter, germinate very poorly, both at high and low osmolarity. These data indicate that ACG is an osmosensor controlling spore germination through activation of protein kinase A.  相似文献   

5.
Freshly formed wild type Dictyostelium discoideum spores are constitutively dormant, and thus require an activation treatment to germinate. Wild type spores may germinate without an activation treatment (autoactivate) after a period of ageing (maturation) in the intact fruiting body. Mutants have been isolated which autoactivate without the need for ageing. Autoactivation of mutant and aged wild type spores appears to occur by identical mechanisms; thus the mutation may involve premature maturation. Autoactivation is mediated by autoactivator substances released from spores as they spontaneously swell. These factors are readily chromatographed, and elute from a Biogel P2 column in three peaks of activity. One activity peak appears only after spores have begun to germinate. No autoactivator substances are released from heat activated spores. Autoactivation is sensitive to cychloheximide, and may result from altered spore permeability. Autoactivation is likely to be the mechanism of D. discoideum spore germination in nature.  相似文献   

6.
Expression of ricin A in either prespore or prestalk cells of Dictyostelium discoideum results in cell-autonomous lethality. Strains expressing the toxic gene under the control of a prestalk-specific regulatory region fail to culminate or form stalks, but form spores normally. Strains expressing ricin A under the control of a prespore-specific regulatory region form neither spores nor stalks. Regulation of the cell types results in conversion of prestalk cells to prespore cells when the prespore cells are poisoned. The newly converted cells then express ricin A and die. In contrast, we could not detect any significant conversion of prespore cells to prestalk cells when the prestalk cells are poisoned under our experimental conditions. This regulation of cell types suggests that the tendency of prestalk cells to regulate and become prespore cells is inhibited by the already established prespore cells. It appears that prespore cells control prestalk cell regulation by producing an inhibitor of prespore differentiation to which they themselves are insensitive.  相似文献   

7.
Shortly after initiation of Dictyostelium fruiting body formation, prespore cells begin to differentiate into non-motile spores. Although these cells lose their ability to move, they are, nevertheless, elevated to the tip of the stalk. Removal of the amoeboid anterior-like cells, located above the differentiating spores in the developing fruiting body, prevents further spore elevation although the stalk continues to elongate. Furthermore, replacement of the anterior-like cells with anterior-like cells from another fruiting body largely restores the ability to lift the spores to the top of the stalk. However, if amoeboid prestalk cells are used to replace the anterior-like cells, there is no restoration of spore elevation. Finally, when a droplet of mineral oil replaces differentiating spores, it is treated as are the spores: the mineral oil is elevated in the presence of anterior-like cells and becomes arrested on the stalk in the absence of anterior-like cells. Because a similar droplet of mineral oil is totally ignored by slug tissue, it appears that there is a dramatic transformation in the treatment of non-motile matter at this point in Dictyostelium development.  相似文献   

8.
The integrity of spores formed by mutant strains of Dictyostelium discoideum lacking the major spore coat proteins, SP96, SP70, or SP60, was compared to that of wild-type strains. Single, double, and triple knock-out strains developed normally and produced spores which were indistinguishable from wild-type spores by light or electron microscopy. However, the mutant strains were susceptable to staining with the lectin, ricin A, which recognizes a galactose-rich polysaccharide that is normally hidden by overlying spore coat proteins. The intensity of staining with fluorescently labeled ricinA increased as the spore coat proteins were incrementally lost. While these results indicate that the major outer spore coat proteins are not essential for the construction of a multi-layered spore coat in Dictyostelium, they show that the spores are more porous which might make them at risk to predators before germination.  相似文献   

9.
Extracellular cAMP is a critical messenger in the multicellular development of the cellular slime mold Dictyostelium discoideum. The levels of cAMP are controlled by a cyclic nucleotide phosphodiesterase (PDE) that is secreted by the cells. The PDE gene (pdsA) is controlled by three promoters that permit expression during vegetative growth, during aggregation, and in prestalk cells of the older structures. Targeted disruption of the gene aborts development, and complementation with a modified pdsA restores development. Two distinct promoters must be used for full complementation, and an inhibitory domain of the PDE must be removed. We took advantage of newly isolated PDE-null cells and the natural chimerism of the organism to ask whether the absence of PDE affected individual cell behavior. PDE-null cells aggregated with isogenic wild-type cells in chimeric mixtures, but could not move in a coordinated manner in mounds. The wild-type cells move inward toward the center of the mound, leaving many of the PDE-null cells at the periphery of the aggregate. During the later stages of development, PDE-null cells in the chimera segregate to regions which correspond to the prestalk region and the rear of the slug. Participation in the prespore/spore population returns with the restoration of a modified pdsA to the null cells.  相似文献   

10.
11.
12.
In Dictyostelium, initial cell type choice is correlated with the cell-cycle phase of the cell at the time of starvation. We have isolated a mutant, ratioA (rtoA), with a defect in this mechanism that results in an abnormally high percentage of prestalk cells. The rtoA gene has been cloned and sequenced and codes for a novel protein. The cell cycle is normal in rtoA. In the wild type, prestalk cells differentiate from those cells in S or early G2 phase at starvation and prespore cells from cells in late G2 or M phase at starvation. In rtoA mutants, both prestalk and prespore cells originate randomly from cells in any phase of the cell cycle at starvation.  相似文献   

13.
Deletion of the single gene for the Dictyostelium G protein beta-subunit blocks development at an early stage. We have now isolated temperature-sensitive alleles of Gbeta to investigate its role in later development. We show that Gbeta is directly required for adenylyl cyclase A activation and for morphogenetic signaling during the entire developmental program. Gbeta was also essential for induction of aggregative gene expression by cAMP pulses, a process that is mediated by serpentine cAMP receptors (cARs). However, Gbeta was not required for cAR-mediated induction of prespore genes and repression of stalk genes, and neither was Gbeta needed for induction of prestalk genes by the differentiation inducing factor (DIF). cAMP induction of prespore genes and repression of stalk genes is mediated by the protein kinase GSK-3. GSK-3 also determines cell-type specification in insects and vertebrates and is regulated by the wingless/wnt morphogens that are detected by serpentine fz receptors. The G protein-dependent and -independent modes of cAR-mediated signaling reported here may also exist for the wingless/wnt signaling pathways in higher organisms.  相似文献   

14.
We have identified a novel gene, Spalten (Spn) that is essential for Dictyostelium multicellular development. Spn encodes a protein with an amino-terminal domain that shows very high homology to Galpha-protein subunits, a highly charged inter-region, and a carboxy-terminal domain that encodes a functional PP2C. Spn is essential for development past the mound stage, being required cell autonomously for prestalk gene expression and nonautonomously for prespore cell differentiation. Mutational analysis demonstrates that the PP2C domain is the Spn effector domain and is essential for Spn function, whereas the Galpha-like domain is required for membrane targeting and regulation of Spn function. Moreover, Spn carrying mutations in the Galpha-like domain that do not affect membrane targeting but affect specificity of guanine nucleotide binding in known GTP-binding proteins are unable to fully complement the spn- phenotype, suggesting that the Galpha-like domain regulates Spn function either directly or indirectly by mediating its interactions with other proteins. Our results suggest that Spn encodes a signaling molecule with a novel Galpha-like regulatory domain.  相似文献   

15.
16.
17.
18.
19.
20.
Serum response factor (SRF) plays a central role during myogenesis, being required for the expression of striated alpha-actin genes. As shown here, the small GTPase RhoA-dependent activation of SRF results in the expression of muscle-specific genes, thereby promoting myogenic differentiation in myoblast cell lines. Co-expression of activated V14-RhoA and SRF results in an approximately 10-fold activation of the skeletal alpha-actin promoter in replicating myoblasts, while SRFpm1, a dominant negative SRF mutant, blocks RhoA dependent skeletal alpha-actin promoter activity. Serum withdrawal further potentiates RhoA- and SRF-mediated activation of alpha-actin promoter to about 30-fold in differentiated myotubes. In addition, the proximal SRE1 in the skeletal alpha-actin promoter is sufficient to mediate RhoA signaling via SRF. Furthermore, SRFpm1 and to a lesser extent dominant negative N19-RhoA inhibit myoblast fusion, postreplicative myogenic differentiation, and expression of direct SRF targets such as skeletal alpha-actin and indirect targets such as myogenin and alpha-myosin heavy chain. Moreover, RhoA also stimulates the autoregulatable murine SRF gene promoter in myoblasts, and the expression level of SRF is reduced in myoblasts overexpressing N19-RhoA. Our study supports the concept that RhoA signaling via SRF serves as an obligatory muscle differentiation regulatory pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号