首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The poor adhesion of gold nanoparticles (NPs) to glass has been a known obstacle to studies and applications of NP-based systems, such as glass/Au-NP optical devices. Here we present a simple scheme for obtaining stable localized surface plasmon resonance (LSPR) transducers based on Au NP films immobilized on silanized glass and annealed. The procedure includes high-temperature annealing of the Au NP film, leading to partial embedding in the glass substrate and stabilization of the morphology and optical properties. The method is demonstrated using citrate-stabilized Au NPs, 20 and 63 nm mean diameter, immobilized electrostatically on glass microscope cover slides precoated with an aminosilane monolayer. Partial thermal embedding of the Au NPs in the glass occurs at temperatures in the vicinity of the glass transition temperature of the substrate. Upon annealing in air the Au NPs gradually settle into the glass and become encircled by a glass rim. In situ transmission UV-vis spectroscopy carried out during the annealing in a specially designed optical oven shows three regions: The most pronounced change of the surface plasmon (SP) band shape occurs in the first ca. 15 min of annealing; this is followed by a blue-shift of the SP band maximum (up to ca. 5 h), after which a steady red-shift of the SP band is observed (up to ca. 70 h, when the experiment was terminated). The development of the SP extinction spectrum was correlated to changes in the system structure, including thermal modification of the NP film morphology and embedding in the glass. The partially embedded Au NP films pass successfully the adhesive-tape test, while their morphology and optical response are stable toward immersion in solvents, drying, and thiol self-assembly. The enhanced adhesion is attributed to the metal NP embedding and rim formation. The stabilized NP films display a refractive index sensitivity (RIS) of 34-48 nm/RIU and 0.1-0.4 abs.u./RIU in SP band shift and extinction change, respectively. The RIS can be improved significantly by electroless deposition of Au on the embedded NPs, while the system stability is maintained. The method presented provides a simple route to obtaining stable Au NP film transducers.  相似文献   

2.
A two-dimensional self-assembly of uncapped Ag nanoparticles was prepared at the air–water interface. In the experiment, ethanol was added into the Ag-based colloid to reduce the surface charge density on the nanoparticles and the air–water interfacial energy, leading to the nanoparticles adsorption and assembling at the air–water interface. It was found that the array structure was controllable. The ordered nanoparticle array could be changed to a fractal structure by varying gradually the amount of the added ethanol. Moreover, it was demonstrated that the assembly was sensitive to the surface charge density on the particles, the Debye length in the colloid and the interfacial tension between nanoparticle/water (air).  相似文献   

3.
4.
5.
Polyaniline nanofiber/gold nanoparticle nonvolatile memory   总被引:2,自引:0,他引:2  
Tseng RJ  Huang J  Ouyang J  Kaner RB  Yang Y 《Nano letters》2005,5(6):1077-1080
A nonvolatile plastic digital memory device based on nanofibers of the conjugated polymer polyaniline decorated with gold nanoparticles is reported. The device has a simple structure consisting of the plastic composite film sandwiched between two electrodes. An external bias is used to program the ON and OFF states of the device that are separated by a 3-orders-of-magnitude difference in conductivity. ON-OFF switching times of less than 25 ns are observed by electrical pulse measurements. The devices possess prolonged retention times of several days after they have been programmed. Write-read-erase cycles are also demonstrated. The switching mechanism is attributed to an electric-field-induced charge transfer from the polyaniline nanofibers to the gold nanoparticles. The active polymer layer is created by growing nanometer size gold particles within 30-nm-diameter polyaniline nanofibers using a redox reaction with chloroauric acid. This device combines two exciting research areas--nanoparticles and conducting polymers--to form a novel materials system with unique functionality.  相似文献   

6.
Ultrathin gold films, with thicknesses between the onset of conductivity (d ~ 5 nm) and the electron mean free path (d ~ 80 nm), display surface-sensitive resistivities, which have been exploited to follow the adsorption and desorption of molecular monolayers at the metal-solution interface with high precision. For nominal Au film thicknesses (d ~ 40 nm), strongly chemisorbed thiolate monolayers increase the resistivity of the thin Au films by ~4%, but weakly adsorbed species, such as pyridine or phenolate at open circuit, induce no observable change in the Au film resistance. Resistivity measurements implemented with a high-stability current source and high-precision digital voltmeter sampling at 1 Hz resulted in 3σ uncertainties in alkanethiolate coverage of 1.4 × 10(-)(4) monolayer. Surface plasmon resonance measurements, performed simultaneously with resistivity measurements, indicate that changes in resistivity vary monotonically with coverage with three distinct regions: a low-coverage region of heightened adsorbate mobility, an intermediate-coverage region with generally linear behavior, and a chain length-dependent saturation region at high coverages. Resistivity measurements were also capable of reproducibly following the chemical state of the Au surface through a complex set of redox manipulations, demonstrating the versatility of this simple measurement.  相似文献   

7.
The well-arrayed Pd and Au nanoparticle thin films were successfully prepared by making use of self-assembled PS-b-P4VP block copolymer (BCP) as a mask for the reduction of PdCl2 deposited on glass substrate. The films consisted of spherialcal nanoparticles with an average diameter of about 45 nm. For monitoring the size, shape and array formation of Pd nanopaticle films, this procedure was proved better to the conventional process in which PdCl2 impregnated in the channels of self assembled BCP film is reduced to form nanoparticle array. This observations of Pd nanoparticle array film formation is supported by the AFM and UV-VIS studies of Au nanoparticle array films formed by conventional method.  相似文献   

8.
The remarkable optical and electrical properties of nanostructured materials are considered now as a source for a variety of biomaterials, biosensing, and cell interface applications. In this study, we report the first example of hybrid bionanodevice where absorption of light by thin films of quantum confined semiconductor nanoparticles of HgTe produced by the layer-by-layer assembly stimulate adherent neural cells via a sequence of photochemical and charge-transfer reactions. We also demonstrate an example of nanoscale engineering of the material driven by biological functionalities.  相似文献   

9.
We present an experimental analysis of the plasmonic scattering properties of gold nanoparticles controllably placed nanometers away from a gold metal film. We show that the spectral response of this system results from the interplay between the localized plasmon resonance of the nanoparticle and the surface plasmon polaritons of the gold film, as previously predicted by theoretical studies. In addition, we report that the metal film induces a polarization to the single nanoparticle light scattering, resulting in a doughnut-shaped point spread function when imaged in the far-field. Both the spectral response and the polarization effects are highly sensitive to the nanoparticle-film separation distance. Such a system shows promise in potential biometrology and diagnostic devices.  相似文献   

10.
11.
溴代聚苯醚膜对有机液/水混合体系的渗透汽化分离   总被引:4,自引:0,他引:4  
对聚2,6-二甲苯撑氧(PPO)进行了溴代反应,制备的溴代PPO(简称BPPO)均质膜,以氨水进行化学交联后,表征了其对氯代烃如二氯甲烷、氯仿、氯苯及乙酸乙酯等的水溶液的渗透汽化(PV)特性;研究了BPPO膜交联性质与其PV特性间的关系,并进行了理论解释 。  相似文献   

12.
聚4—甲基戊烯—1对有机液/水混合体系的渗透汽化分离   总被引:2,自引:0,他引:2  
以结晶性聚合物聚4-甲基戊烯-1(PMP)为膜材质,制备了PMP均质膜,研究了其分子结构与其对二氯甲烷、三氯甲烷和1,2-二氯乙烯等氯代烃有机液/水混合体系的渗透汽化(PV)特性间的关系,并进行了理论解释。  相似文献   

13.
Kauffman DR  Star A 《Nano letters》2007,7(7):1863-1868
Single-walled carbon nanotube (SWNT) field effect transistors were electrochemically decorated with Pt, Pd, Au, and Ag nanoparticles. Upon exposure to 10 ppm NO gas in N2 a trend was found wherein the magnitude of electron transfer into the SWNT valence band scaled with the work function of the individual metal. This trend gives experimental support for the formation of a metal work function dependent potential barrier at the SWNT--nanoparticle interface.  相似文献   

14.
Presented in this paper are results demonstrating the irreversibility in conductivity changes seen for thin, Langmuir–Schaeffer deposited thiol encapsulated gold nanoparticle films raised to a high temperature. The conductivity changes from low values that rapidly increase at higher temperature, to values that remain high and are almost linear with temperature. Comparisons are made to the expected behavior predicted by the conventional model of electron hopping in metal nanoparticle films.  相似文献   

15.
Interfaces between disordered normal materials and superconductors (S) can exhibit 'reflectionless tunnelling' (RT)-a phenomenon that arises from repeated disorder-driven elastic scattering, multiple Andreev reflections, and electron/hole interference. RT has been used to explain zero-bias conductance peaks (ZBCPs) observed using doped semiconductors and evaporated granular metal films as the disordered normal materials. Recently, in addition to ZBCPs, magnetoconductance oscillations predicted by RT theory have been observed using a novel normal disordered material: self-assembled nanoparticle films. In the present study, we find that the period of these oscillations decreases as temperature (T) increases. This suggests that the magnetic flux associated with interfering pathways increases accordingly. We propose that the increasing flux can be attributed to magnetic field penetration into S as [Formula: see text]. This model agrees remarkably well with known T dependence of penetration depth predicted by Bardeen-Cooper-Schrieffer theory. Our study shows that this additional region of flux is significant and must be considered in experimental and theoretical studies of RT.  相似文献   

16.
Monolayer-protected gold nanoparticle materials were synthesized and characterized for use as sorptive layers on chemical sensors. Thiols investigated as monolayer-forming molecules included dodecanethiol, benzenethiol, 4-chlorobenzenethiol, 4-bromobenzenethiol, 4-(trifluoromethyl)benzenethiol, 4-hydroxybenzenethiol, and 4-aminobenzenethiol. Films of selected monolayer-protected nanoparticle (MPN) materials were deposited on thickness shear mode devices and vapor uptake properties were measured at 298 K. Many, but not all, MPN-based sensing layers demonstrated rapid and reversible uptake of vapors, and sorptive selectivity varies with the monolayer structure. The mass of vapor sorbed per mass of sorptive material was determined and compared with poly(isobutylene) and poly(epichlorohydrin) as examples of simple sorptive polymers that have been used on vapor sensors. The nanoparticle-based films considered here were less sorptive than the selected polymers on a per-mass basis. Partition coefficients, which measure the mass of vapor sorbed per volume of the sorptive phase, were estimated for these MPN materials and found to be comparable to or less than those of the polymer layers. Implications for the roles of sorption and transduction in determining the performance of chemical sensors coated with nanoparticle-based films are discussed.  相似文献   

17.
The electrostatic layer-by-layer (LbL) assembly of acid-modified multi-walled carbon nanotubes (MWNTs) and biopolymer chitosan (CHIT) is realized on planar substrates and polystyrene (PS) microsphere templates, respectively. The successful stepwise growing process of the composite films on planar substrates is investigated and confirmed by scanning electron microscopy and UV-vis spectroscopy. The transfer of the LbL assembly of MWNTs and CHIT to spherical PS microspheres leads to novel (MWNT/CHIT)PS core-shell structure, on which the gold nanoparticles (GNPs) are deposited to fabricate GNP(MWNT/CHIT)PS composite microspheres. The glass carbon electrodes modified with such (MWNT/CHIT)PS or GNP(MWNT/CHIT)PS composites exhibit satisfactory electrocatalytic activities for biomolecule dopamine.  相似文献   

18.
A new reversed-phase high-performance liquid chromatographic (RP HPLC) procedure has been theoretically and experimentally established. The approach consists of the simultaneous development of a gradient of pH and of the organic modifier in the mobile phase. The proposed theoretical model of the pH/organic solvent double-gradient RP HPLC allows determination of both pK(a) and the lipophilicity parameter of the ionized and the nonionized form of the analyte and prediction of the retention times at specific separation conditions as well as bandwidth for all analytes. The model provides a rational basis for optimization of separation of ionizable analytes at any given chromatographic mode and analysis conditions. In addition, in the case of pH/organic solvent double-gradient RP HPLC, a compression of analyte peak and its reduced tailing can be expected.  相似文献   

19.
20.
We demonstrate the formation of accurate 2D gold nanoparticle arrays via solid-state dewetting on a pre-patterned substrate. The annealing-induced dewetting of Au film on both flat and pre-patterned SiO2 substrates is investigated. The pre-patterned structures affect clearly the formation of nanoparticles, and there is a depth effect of the pre-patterned grooves on the formation of nanoparticles during dewetting. Especially in pre-patterned areas with deep grid grooves (depth 150 nm) there is almost one single particle formed in the flat areas of every unit square, thus resulting in a very periodic 2D structure of gold nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号