首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rare earth (RE) -doped ZnO electroluminescence is worthy of investigation for phosphor-free white light-emitting diodes (LEDs) due to their pure and sharp emissions. Whereas, the low solubility of RE ions in ZnO films is found to hinder the performance of RE-doped ZnO devices. Herein, ZnO:Eu and ZnO:Eu/Tb LEDs were synthesized and the electroluminescence properties were tested. The results show that the emission intensity of ZnO: Eu/Tb LED is 8 times higher than that of ZnO: Eu LED while the input power is smaller when the concentration of terbium is proper. Furthermore, we discussed the excitation mechanism and found that the ratio of the EL intensity of the 5D1 → 7F1 to 5D0 → 7FJ (J=0???4) transition increases with increasing Tb doping concentration, which may indicate the possibility of energy transfer from Tb3+ to Eu3+. The results are believed to be an effective strategy to improve the electroluminescence of RE-doped semiconductor for white LEDs.  相似文献   

2.
A novel color-tunable PVP/[Tb(BA)3phen+Eu(BA)3phen] luminescent composite nanofibers had been fabricated by single axial electrospinning. The morphology and elements components of the as-prepared nanofibers were characterized by field emission scanning electron microscopy and energy dispersive spectroscopy. The luminescent properties were systematically investigated by photoluminescence spectroscopy. The obtained nanofibers had excellent fibrous morphology and smooth surface, and the average diameter was about 200 nm. The novel luminescent composite nanofibers exhibited the green, orange and red fluorescence emission peaks at 490, 545, 592 and 616 nm, which were ascribed to the 5D4 → 7F6 (490 nm) and 5D4 → 7F5 (545 nm) energy transitions of Tb3+ ions, and the 5D0 → 7F1 (592 nm), 5D0 → 7F2 (616 nm) transitions of Eu3+ ions, respectively. The emitting color of the luminescent composite nanofibers could be tuned by adjusting the mass ratio of terbium complexes and europium complexes in a wide color range of red-yellow-green under the excitation of 274-nm single-wavelength ultraviolet light. The color-tunable luminescent composite nanofibers have potential applications in the fields of display panels, lasers and bioimaging.  相似文献   

3.
LaOI:Tb3+ nanomaterials including nanofibers, nanobelts, and hollow nanofibers were successfully synthesized by electrospinning combined with a double-crucible iodination method using NH4I as iodine source for the first time. X-ray diffractometry analysis revealed that LaOI:Tb3+ nanostructures were phase-pure tetragonal structure with space group of P4/nmm. Scanning electron microscopy analysis showed that the diameters of LaOI:Tb3+ nanofibers, hollow nanofibers and the width of nanobelts were respectively 199.5 ± 30, 376.05 ± 48 nm and 5.2 ± 1.3 μm under the 95 % confidence level. The thickness of the tubewall for hollow nanofibers was 40.5 nm and the thickness of LaOI:Tb3+ nanobelts was 154 nm. Photoluminescence (PL) study demonstrated that the LaOI:Tb3+ nanomaterials exhibited the emission peaks located at 485, 544, 583 and 625 nm, which were ascribed to 5D3 → 7F1, 6, 5D4 → 7F5, 5D4 → 7F4 and 5D4 → 7F3 of energy level transitions of Tb3+, respectively. The PL intensity was strongly affected by the Tb3+-doping concentration, and the optimum quenching concentration was 9 %. The luminescence intensity of LaOI:Tb3+ nanofibers was obviously stronger than that of LaOI:Tb3+ hollow nanofibers and nanobelts under the same measuring conditions. Commission Internationale de L’Eclairage (CIE) analysis demonstrated that the luminescence color of LaOI:9 % Tb3+ nanostructures were located in the green region in CIE chromaticity coordinates diagram. The possible formation mechanisms of LaOI:Tb3+ one dimensional nanomaterials were also proposed.  相似文献   

4.
Colloidal zinc sulfide solutions have been prepared by reacting zinc trifluoroacetate and thioacetamide in methyl methacrylate as a reaction medium, and europium and terbium salts have been added to the solution. Using methyl methacrylate block polymerization, we have synthesized PMMA/ZnS, PMMA/ZnS:Eu(III), PMMA/ZnS:Tb(III), and PMMA/ZnS:Eu(III),Tb(III) composites. The luminescence of the composites is due to charge recombination at energy levels of structural defects and impurities in ZnS and also to 5D07F j and 5D47F j electronic transitions of the Eu3+ and Tb3+ ions. It depends on the composition and structure of the composites, excitation wavelength, and other factors. The mutual effects of the ZnS and the Eu3+ and Tb3+ ions show up as changes in the position and relative intensity of luminescence bands in the spectra of the composites.  相似文献   

5.
Cadmium sulfide was prepared by colloidal synthesis in methyl methacrylate (MMA). Europium and terbium salts were added to the colloidal solutions. Using MMA radical polymerization, we synthesized PMMA/CdS:Eu(III), PMMA/CdS:Tb(III), and PMMA/CdS:Eu(III):Tb(III) luminescent composites. Their luminescence is due to defects in the CdS crystals and the 5 D о → 7Fj and 5 D 4 7 F j electronic transitions of the Eu3+ and Tb3+ ions, respectively. It depends on the composition of the materials, complexation on the surface of the colloidal particles, heat treatment time during synthesis, excitation wavelength, and other factors.  相似文献   

6.
YF3:Tb3+ hollow nanofibers were successfully fabricated via fluorination of the relevant Y2O3:Tb3+ hollow nanofibers which were obtained by calcining the electrospun PVP/[Y(NO3)3 + Tb(NO3)3] composite nanofibers. The morphology and properties of the products were investigated in detail by X-ray diffraction, scanning electron microscope, transmission electron microscope, and fluorescence spectrometer. YF3:Tb3+ hollow nanofibers were pure orthorhombic phase with space group Pnma and were hollow-centered structure with the mean diameter of 148 ± 23 nm. Fluorescence emission peaks of Tb3+ in the YF3:Tb3+ hollow nanofibers were observed and assigned to the energy levels transitions of 5D4 → 7FJ (J = 6, 5, 4, 3) (490, 543, 588, and 620 nm) of Tb3+ ions, and the 5D4 → 7F5 hypersensitive transition at 543 nm was the dominant emission peak. Moreover, the emitting colors of YF3:Tb3+ hollow nanofibers were located in the green region in CIE chromaticity coordinates diagram. The luminescent intensity of YF3:Tb3+ hollow nanofibers was increased remarkably with the increasing doping concentration of Tb3+ ions and reached a maximum at 7 mol% of Tb3+. The possible formation mechanism of YF3:Tb3+ hollow nanofibers was also discussed. This preparation technique could be applied to prepare other rare earth fluoride hollow nanofibers.  相似文献   

7.
We have studied the photoluminescence spectra and the luminescence magnetic circular polarization (LMCP) spectra in the region of the 4f-4f radiative transition 5D47F6 in the rare earth Tb3+ ion in a Y3Al5O12 garnet matrix. A comparison of the experimental and theoretically calculated LMCP spectra allowed parameters of the odd crystal field component to be determined that removes the prohibition with respect to parity from the 4f-4f transitions in Tb3+ ion in the garnet structure. The energy spectra and wave functions of 5D4 and 7F6 multiplets of Tb3+ ion in a crystal field with the D2 symmetry have been calculated.  相似文献   

8.
β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm) hexagonal microrods have been successfully synthesized through a facile molten salt method without any surfactant. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. It is found that at a preferred reaction temperature of 400 °C, the structure of β-NaYF4 can gradually transform from microtubes to microrods as reaction time extends from 0.5 to 4 h. Furthermore, as the molar ratio of NaF:RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+) increased, the phase of sample transforms from YF3 into NaYF4. Under the excitation of 395 nm ultraviolet light, β-NaYF4:5 %Eu3+ shows the emission lines of Eu3+ corresponding to 5D0-3 → 7F J (J = 1–4) transitions from 400 to 700 nm, resulting in red down-conversion (DC) light emission. When doped with 5 % Tb3+ ions, the strong DC fluorescence corresponding to 5D4 → 7F J (J = 6, 5, 4, 3) transitions with 5D4 → 7F J (green emission at 544 nm) being the most prominent group that has been observed. Moreover, upon 980 nm laser diode excitation, the Yb3+/Er3+- and Yb3+,Tm3+- co-doped β-NaYF4 samples exhibit bright yellow and blue upconversion (UC) luminescence, respectively, by two- or three-photon UC process. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

9.
Nanoparticles of SrWO4 doped with Tb3+ were synthesized in ethylene glycol, Dimethyl sulfoxide, and water. X-ray powder diffractions show that the nanoparticles synthesized in all these solvents have a pure tetragonal scheelite structure without the presence of deleterious phases. Scanning electron microscopy images show that nanoparticles are in the range of 15–25 nm with an inhomogeneous nature. The emission spectra of SrWO4:xTb3+ nanoparticles show the characteristic green emission (545 nm) of Tb3+ ions corresponding to 5D4 → 7F5 transition due to efficient charge transfer from WO4 2? to Tb3+ ions, when they are excited at 254 nm. Other emissions can be observed due to 5D4 → 7F6, 4, 3 transitions. The optimum concentration of Tb3+ ions for the highest luminescence was found to be 10 mol%. The luminescence intensity of the samples prepared in ethylene glycol is higher than that in Dimethyl sulfoxide and water. The excellent luminescence properties of SrWO4:Tb3+ phosphor makes it as a potential green phosphor.  相似文献   

10.
Eight kinds of silicate sources were adopted to prepare M2Gd8(SiO4)5O2: RE3+ (M = Ca, Sr; RE = Eu, Tb) phosphors by the sol–gel method. Scanning electronic microscope (SEM) was used to compare the different configuration of patterns rely on eight different silicon sources. X-ray powder diffraction (XRD) also has been employed to analyze their microstructures and particle sizes further. All the phosphor show the characteristic emission 5D4 → 7FJ (J = 6, 5, 4, 3) of Tb ions and 5D0 → 7FJ (J = 1, 2) of Eu ions, indicating that the emission intensity is affected by the silicate sources.  相似文献   

11.
Sols were prepared by reacting yttrium, europium, and terbium trifluoroacetates with thioacetamide in ethyl acetate. The Eu3+ and Tb3+ concentrations in the sols were 0.10 to 10 wt % relative to yttrium, which corresponded to 0.061 (0.059) to 6.1 (5.9) at % Eu (Tb). The sols were converted into a gel-like state by slowly evaporating the solvent. After ripening, the gels were heat-treated at a temperature of 800°C. X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and IR spectroscopy results showed that the resultant composites consisted predominantly of a mixture of Y2O3 and YOF. The Eu3+ and Tb3+ ions were shown to substitute for Y3+ ions in the crystal lattices of the yttrium oxide and yttrium oxyfluoride. The formation of the (Eu0.6Y0.4)2O3, Eu2O3, and EuOF phases was demonstrated. We determined the types and parameters of the crystal lattices of the synthesized materials in relation to activator concentrations. The luminescence of the composites is due to the 5 D 07 F j and 5 D 47 F j electronic transitions of the Eu3+ and Tb3+ ions and depends on the host and activator compositions, the excitation wavelength, and other factors.  相似文献   

12.
SrWO4, SrWO4:Tb3+, and SrWO4:Eu3+ powders were synthesized by a method of molten salt. XRD patterns showed that the synthesized powders have a pure tetragonal scheelite structure without the presence of deleterious phases. Scanning electron microscopy images show that powders are in the range of 20–35 nm. The emission spectrum of SrWO4 shows the emission peak in the blue spectral region. The excitation spectra of SrWO4:Tb3+ and SrWO4:Eu3+ show the energy transfer from WO4 2? group to Tb3+ and Eu3+ ions with a high efficiency. The emission spectrum of SrWO4:Tb3+ shows the green emission at 545 nm corresponding to the 5D4 → 7F5 transition of Tb3+. The emission spectrum of SrWO4:Eu3+ shows the red emission located at 612 nm corresponding to the 5D0 → 7F2 transition of Eu3+. The asymmetry ratio of SrWO4:Eu3+ is found to be 5.54, which indicates that the Eu3+ ions are located in a lower symmetric site.  相似文献   

13.
Hexagonal vaterite-type LuBO3:Tb3+/Eu3+ lantern-like phosphors have been successfully prepared by a simple hydrothermal process directly without sintering treatment. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction, photoluminescence, low-voltage cathodoluminescence, and kinetic decays were used to characterize as-prepared phosphors, which present complex lantern-like 3D assemblies that are composed of nanosheets with thickness of about 23 nm and high crystallinity in spite of the moderate reaction temperature of 210 °C. The reaction mechanism and the self-assembly evolution process have been proposed. The pH, temperature, time, and ethylene glycol play critical roles in the formation of this specific hierarchical and complex 3D structure. Under UV excitation and low-voltage electron beam excitation, vaterite-type LuBO3:Tb3+ samples showed the characteristic green emission of Tb3+ corresponding to 5 D 4 → 7 F 5 transitions; vaterite-type LuBO3:Eu3+ particles exhibited a strong red emission corresponding to primary group electric dipole transition 5 D 0 → 7 F 2 with much higher R/O values (chromatically redder fluorescence, increase of 29 %) compared with samples by conventional solid-state reaction, which have potential applications in fluorescent lamps and field emission displays.  相似文献   

14.
Strong room-temperature terbium and europium photoluminescence, with well-resolved optical bands corresponding to electron transitions 5D47Fj (j = 3–6) for Tb3+, and 5D07Fj (j = 1–4) for Eu3+, was observed from porous anodic alumina films of 5–55 µm thickness after immersion in solutions of terbium or europium nitrates and subsequent heat treatment. GDOES and TEM examinations of the specimens treated with terbium ions revealed a uniform distribution of terbium across the porous anodic film thickness of 55 µm, with an increased terbium concentration toward the pore bases. Europium- and terbium-doped specimens displayed anisotropic indicatrix of luminescence for the emission wavelength of 613 nm for europium and 545 nm for terbium, with a maximum intensity in the direction along the channels of the pores that is typical for porous anodic alumina with lanthanide ions within the pores. The potential applications of porous anodic alumina doped with lanthanides through immersion in the absence of xerogel are discussed.  相似文献   

15.
Optically efficient terbium activated alkaline earth metal tungstate nano phosphors (AWO4 [A = Ca, Sr]) with different doping concentrations have been prepared by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The prepared phosphors were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), Fourier transform Raman (FT-Raman) spectroscopy, photoluminescence and diffuse reflectance spectroscopy measurements. The XRD and Raman spectra results showed that the prepared powders present a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 850 cm?1, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO4]2? tetrahedron groups and the SEM images reveal that the particle sizes were in the range of 20–60 nm. The excitation and the emission spectra were measured to characterize the luminescent properties of the phosphors. The excitation spectrum exhibits a charge transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Tb3+. Under excitation of UV light, these AWO4:xTb3+ (A = Ca, Sr) phosphors showed a strong emission band centered at 545 nm (green) which corresponds to 5 D 4 → 7 F 5 transition of Tb3+. Analysis of the emission spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for CaWO4:xTb3+ and SrWO4:xTb3+ phosphors are about 8 and 6 mol% of Tb3+. The green emission intensity of the solid state meta-thesis prepared CaWO4:0.08Tb3+ and SrWO4:0.06Tb3+ phosphors are 1.5 and 1.2 times greater than that of the commercial LaPO4:Ce, Tb green phosphor. All properties show that AWO4:Tb3+ (A = Ca, Sr) is a very appropriate green-emitting phosphor for fluorescent lamp applications.  相似文献   

16.
NaScMo2O8:RE3+ (RE = Tb, Eu, Tb/Eu, Yb/Er, Yb/Ho) phosphors were successfully synthesized by surfactant-free hydrothermal method and post-calcination treatment. The energy transfer (ET) of MoO4 2? → Tb3+ → Eu3+ was proved by photoluminescence spectra and decay features. Multicolor emissions (green → yellow → red) were obtained by adjusting the ratio of Tb3+/Eu3+ upon excitation into the MoO4 2? at 292 nm. The ET of Tb3+ → Eu3+ was demonstrated to be a resonant type via a dipole–dipole mechanism, and the crystal distance (R c) was calculated by the quenching concentration method. Under 980 nm excitation, the emission of NaScMo2O8:RE3+ (RE = Yb/Er, Yb/Ho) showed strong green (Yb3+/Er3+: 4S3/2, 2H11/2 → 4I15/2; Yb3+/Ho3+: 5S2 → 5I8) luminescence, respectively. Moreover, the doping concentration of the Yb3+ has been optimized under a fixed concentration of Er3+ and Ho3+, respectively. The NaScMo2O8:RE3+ phosphors have potential applications for color displays and light-emitting devices due to a variety of luminous colors.  相似文献   

17.
In order to develop new-typed multifunctional composite nanobelts, polymethyl methacrylate (PMMA) is used as the matrix to construct composite nanobelts containing different amounts of Eu(BA)3phen(BA = benzoic acid, phen = phenanthroline), polyaniline (PANI) and Fe3O4 nanoparticles (NPs), and Eu(BA)3phen/PANI/Fe3O4/PMMA trifunctional composite nanobelts with simultaneous photoluminescence, electricity and magnetism have been successfully fabricated via electrospinning technology. The morphology and properties of the obtained composite nanobelts were characterized by X-ray diffractometry, scanning electron microscopy, vibrating sample magnetometry, fluorescence spectroscopy and Hall effect measurement system. The results indicate that the trifunctional composite nanobelts simultaneously possess excellent photoluminescence, electrical conduction and magnetic properties. Fluorescence emission peaks of Eu3+ ions in the composite nanobelts are observed and assigned to the energy levels transitions of 5D0 → 7F0 (580 nm), 5D0 → 7F1 (593 nm) and 5D0 → 7F2 (615 nm) of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. Furthermore, the luminescent intensity, electrical conductivity and saturation magnetization of the composite nanobelts can be tunable by adjusting amounts of Eu(BA)3phen, PANI and Fe3O4 NPs. The formation mechanism of the composite nanobelts is also proposed. The obtained photoluminescence–electricity–magnetism trifunctional composite nanobelts have potential applications in many areas such as electromagnetic interference shielding, microwave absorption, molecular electronics, biomedicine and future nanomechanics. More importantly, the design concept and construct technique are of universal significance to fabricate other trifunctional naonobelts.  相似文献   

18.
Eu-doped ZnO nanoparticles were synthesized by the chemical precipitation method and the annealing temperature effect on the structures and photoluminescence (PL) properties of the nanoparticles were briefly investigated. The X-ray diffraction and energy dispersive spectroscopy results indicated that the Eu3+ was successfully incorporated into the crystal lattice of ZnO host when the annealing temperature was fixed at 400 °C, but the Eu3+ ions were partly precipitated from the host with the annealing temperature increasing. The as-obtained ZnO: Eu nanocrystals composed of nanoparticles had an average size of 10 nm, and the valence states of europium ions in the nanocrystals were determined as tervalent. PL spectroscopy indicated that the characteristic red emissions of Eu3+ ions were attributed to the 5D0 → 7F0, 5D0 → 7F1 and 5D0 → 7F2 transitions, respectively. Moreover, the annealing temperature was found to have effect on the red emission of Eu3+ ions. That is to say, the energy transfer in the doped nanocrystals could be adjusted by different annealing temperatures.  相似文献   

19.
In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x?=?1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J?=?0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43? can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.  相似文献   

20.
A structure of electrical-luminescent bifunctional bistrand-aligned nanobundles has been successfully fabricated by specially designed parallel spinnerets electrospinning technology. Eu(BA)3phen (BA = benzoic acid, phen = 1,10-phenanthroline) and polyaniline (PANI) were respectively incorporated into polyvinyl pyrrolidone (PVP) and electrospun into bistrand-aligned nanobundles with PANI/PVP as one strand nanofiber and Eu(BA)3phen/PVP as another strand nanofiber. The morphologies and properties of the final products were investigated in detail by scanning electron microscopy, transmission electron microscopy, fluorescence spectroscopy, Hall effect measurement system, and UV–Vis-NIR spectrophotometer. It is found that the as-prepared samples exhibit the nanostructures of bistrand-aligned nanobundles. The mean diameter for individual nanofiber of the bistrand-aligned nanobundles is 180 nm. The [PANI/PVP]//[Eu(BA)3phen/PVP] bistrand-aligned nanobundles possess excellent electrical conduction and luminescent properties. Fluorescence emission peaks of Eu3+ are observed in the [PANI/PVP]//[Eu(BA)3phen/PVP] electrical-luminescent bifunctional bistrand-aligned nanobundles and assigned to 5D0 → 7F0 (581 nm), 5D0 → 7F1 (592 nm), 5D0 → 7F2 (615 nm) energy levels transitions of Eu3+ ions, and the 5D0 → 7F2 hypersensitive transition at 615 nm is the predominant emission peak. The electrical conductivity reaches up to the order of 10?3 S/cm. The electrical conductivity and luminescent intensity of the bistrand-aligned nanobundles can be tunable by adding various amounts of PANI and rare earth complex. The novel [PANI/PVP]//[Eu(BA)3phen/PVP] electrical-luminescent bifunctional bistrand-aligned nanobundles have potential applications in display devices and nanomechanics, etc. owing to their excellent electrical conduction and fluorescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号