首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一种高电源抑制比带隙基准电压源的设计   总被引:1,自引:0,他引:1  
采用共源共栅运算放大器作为驱动,设计了一种高电源抑制比和低温度系数的带隙基准电压源电路,并在TSMC 0.18μm CMOS工艺下,采用HSPICE进行了仿真.仿真结果表明:在-25~115℃温度范围内电路的温漂系数为9.69×10-6/℃,电源抑制比达到-100 dB,电源电压在2.5~4.5 V之间时输出电压Vref的摆动为0.2 mV,是一种有效的基准电压实现方法.  相似文献   

2.
高电源抑制比的CMOS带隙基准电压源   总被引:2,自引:0,他引:2  
介绍了一种采用0.5 μm CMOS N阱工艺制作的带隙基准电压源电路,该电路具有高电源抑制比和较低的温度系数。通过将电源电压加到运算放大器上,运算放大器的输出电压为整个核心电路提供偏置电压,整个核心电路的偏置电压独立于电源电压,使得整个带隙基准电路具有非常高的电源抑制比。基于SPECTRE的仿真结果表明,其电源抑制比可达116 dB,在-40℃~85℃温度范围内温度系数为46 ppm/℃,功耗仅为1.45 mW,可以广泛应用于模/数转换器、数/模转换器、偏置电路等集成电路模块中。  相似文献   

3.
利用CSMC0.6μmCMOS标准工艺及OrCAD模拟电路设计软件环境,设计了2种具有曲率补偿的带隙基准电压源电路,并用Hspice对电路的温漂、电源抑制比、电源电压稳定性及电路功耗进行了仿真。仿真结果表明,第1种在-20℃~130℃温度范围内,温度系数为29.97×10^-6/℃;第2种在-20℃~130℃温度范围内,温度系数为12.73×10^-6/℃。  相似文献   

4.
通过对电压源传统设计中关于速度、噪声、工作温度范围方面的研究,设计了一种带隙基准电压源.基于TSMC工艺套件的电路模拟仿真表明,该电路可在1.5~1.8V电压下正常工作,功耗小于0.5 mW,输出电压为1.25V,温度系数低于1.8×10~(-5)/℃,且低频下PSRR的值可以达到-110 dB.  相似文献   

5.
一种高精度自偏置带隙基准电压源的设计   总被引:1,自引:0,他引:1  
根据当前集成电路设计中对基准电压源的低功耗、高电源调整率、高电源抑制比的要求,设计了一种CMOS工艺下的高精度自偏置带隙基准电压源.该电压源由自身直流通路上的电阻来实现电压自偏置,由三级共源共栅电压偏置来实现电流匹配和电压均衡,静态电流约为13μA,具有31ppm/℃的低温度系数、22.7μV/V的高电源调整率和93.7 dB的高电源抑制比.  相似文献   

6.
针对电源噪声影响图像、声音信息的传输质量,系统电源上电时间过长导致延时增大、时序紧张等问题设计了一种可快速启动的高电源抑制比的带隙基准源.通过引入负反馈回路,维持基准电压的稳定,以提升基准源的电源抑制比.设计了快速启动电路,在电源上电时通过开关管快速导通以拉高基准电压,加速了带隙基准源的启动,在基准建立好之后启动电路停...  相似文献   

7.
基于0.6μm BCD工艺参数,设计了一种新颖的低温漂、低功耗、高电源抑制比的自偏置带隙基准电压源.电路仿真结果表明:其工作电源电压低至1.7V,输出基准电压为1.24 V,温度系数仅6.68×10-6V/℃,电流消耗22 μA,电源抑制比高达82 dB.该电压源可广泛应用于模/数、数/模转换电路和电源管理芯片中.  相似文献   

8.
设计了一种采用0.25μm BiCMOS工艺的带隙基准电压源电路和一种不使用多晶硅电阻的启动电路,整个电路具有低功耗和工作电压低的特点.HSpice模拟仿真结果表明,在-40~90℃温度范围内的各种工艺条件下,其输出电压数值精准.  相似文献   

9.
一种二阶补偿的高精度带隙基准电压源设计   总被引:1,自引:0,他引:1  
基于charter 0.35μm标准CMOS工艺,设计了一种带自启动电路的高精度、低温漂、低功耗带隙基准电压源。电路在传统带隙基准源的基础上进行改进,利用不同材料电阻温漂系数的比值实现二阶补偿。仿真结果表明,在-40-120℃范围内,输出电压达到1.148 V,平均温漂系数为4.9ppm/℃,功耗仅为57μW。  相似文献   

10.
高性能分段温度曲率补偿基准电压源设计   总被引:7,自引:0,他引:7  
针对带隙基准电压源温漂高、电源抑制比(PSRR)低的问题,提出一种新颖的分段曲率补偿技术.该电路将基准源工作的全温度范围划分为3个区间,对各段温度区间进行不同的温度补偿,同时引入电流环负反馈结构,提高电路在低频时的电源抑制比,实现在-40~150℃内,温度系数为1.24×10-6,在DC时电源抑制比为-137dB.该电路采用TSMC0.6μmBCD工艺设计实现,芯片面积为0.5mm2,关断电流小于0.1μA,工作静态功耗为125μW.投片测试结果验证了电路设计的正确性,当电源电压为2.5~6.0V时,该基准源输出电压摆幅仅为0.220mV.  相似文献   

11.
A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsensor and compatible with 0. 6 μm ( double poly) mix process is proposed in this paper. The circuit can be employed in the range of 1. 8 - 8 V and carry out the first-order PTAT ( proportional to absolute temperature) temperature compensation. Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR ( power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased. Results from HSPICE simulation show that the PSRR is - 72. 76 dB in the condition of low-frequency,the temperature coefficient is 2. 4 × 10 -6 in the temperature range from - 10 ℃ to 90 ℃ and the power dissipation is only 14 μW when the supply voltage is 1. 8 V.  相似文献   

12.
基于MOSFET失配分析的低压高精度CMOS带隙基准源   总被引:1,自引:0,他引:1  
分析了MOSFET失配对差分放大器失调电压影响的机理,介绍了降低失调电压提高精度的斩波调制技术的工作机理,在此基础上实现了一种低电压高精度带隙基准电压源设计.利用斩波调制技术有效地减小了带隙基准源中运放的失调所引起的误差,提高了基准源的精度.考虑负载电流镜和差分输出对各±2%的失配时,该基准源的输出电压波动峰-峰值为0.31mV.与未应用斩波调制的带隙基准源相比,相对精度提高了约86倍.当温度在0℃到80℃变化时,该基准源的温度系数小于12×10-6/℃.采用0.25μm 2P5M CMOS工艺实现的版图面积为0.3mm×0.4mm.  相似文献   

13.
采用电流求和结构,提出了一种高性能BiCMOS差分参考电压源,引入零反馈补偿技术有效提高了差分参考电压的电源抑制比,电流求和温度补偿技术保证了差分参考电压的高精度、低温漂.基于ASMC 0.35μm 3.3V BiCMOS工艺的仿真和测试结果表明,在低频和100MHz时,参考差分电压对电源噪声抑制比为78.1dB和66.7dB,对地线噪声抑制比为72.4dB和63.8dB,输出差分参考电压的平均温度系数为11×10-6/℃,有效芯片面积为2.2mm2,功耗小于15mW,可应用于14位100MHz流水线模/数转换中.  相似文献   

14.
Based on the problem that the accuracy of the bandgap affects the performance of the integrated circuit, a novel BGR (bandgap voltage reference) is proposed. It utilizes a feedback compensation network to enhance PSRR and reduce the offset voltage, which improves the system stability and precision. Cadence spectre simulation has been done by the SMIC 018μm 1.8V CMOS process for validation. The results show that the achieved temperature coefficient is 34.6×10-6/℃ over -30℃ to 100℃ and that the PSRR is -63.5dB at a low frequency. The power assumption is only 1.5μW. The circuit is suitable for a low-voltage low-power energy harvesting system.  相似文献   

15.
为了增加单位增益频率与压摆率,并能够工作在低电源电压下,同时降低偏置电流,提出了一种改进的基于0.18μm CMOS工艺的AB类放大器,其采用多级放大器结构,第一级为具有电流镜负载的NMOS差分对,第二反相级由共源放大器实现,第三极为AB类放大器,其能够在±500 m V电源下工作.电路仿真结果显示该放大器相位裕度为87°;总补偿电容为5 p F,与传统放大器相比减少了50%;单位增益频率为21.17 MHz,比传统放大器增大约10倍;压摆率为7.5和8.57 V/μs,与传统电路相比,分别增加了2.8倍和2.6倍.此外,与其他文献相比,该放大器具有较大的单位增益带宽和压摆率以及较小的功耗.  相似文献   

16.
采用BCD(bipolar CMOS DMOS)工艺,设计了一款不需调节且可快速启动的高精度电压基准电路.利用齐纳二极管的稳压特性,构成TTL_BUFFER缓冲电路,使基准电路的输入电压变化范围在1V左右,从而提高电压基准精度.运用MOS器件的自偏特性,迅速给电压基准提供一个偏置,完成了整个电路的快速启动.该电路与基准电路结合后,当输入电压在6.3~14V的范围内时,其基准电压摆动小于2mV;启动时间为20μs左右.与同类电路相比,该电压基准输出摆动缩小了60%,启动时间缩短了40%.  相似文献   

17.
研究提出了一种新型的低纹波高压直流电源电路结构,该电源采用电压互补的工作原理,将两路独立输出电压相同、相位相差90°的半桥逆变电路并联后输出,使其输出电压并联互补,以达到减小直流输出电压脉动的目的.在介绍该电源工作原理和控制方式基础上,并依据该方案研制了一台小功率样机,结合实验波形,证实了该方案的可行性.  相似文献   

18.
通过电磁暂态仿真软件PSCAD/EMTDC验证了并联有源电力滤波器的谐波检测算法及滞环控制算法,论证了并联有源电力滤波器主电路中最重要的参数直流侧电容电压设计原则,并在TMS320LF2407中设计了有源滤波器的软件结构.实验表明,基于瞬时无功功率理论的检测算法能满足并联有源电力滤波器的谐波提取要求,直流侧电容电压需要达到一定值才能控制输出指令电流.  相似文献   

19.
DC-DC转换器中低压高速驱动电路的设计   总被引:1,自引:1,他引:1  
给出了射随器输出驱动电路和图腾柱输出驱动电路的结构以及两种电路结构的局限性。针对低压高速的要求提出了一种改进型的驱动输出电路,工作电压可低至1.2V。电路基于Bipolar工艺设计,用Hspice软件仿真结果表明:根据便携式产品的电池电压不同,设计效率高达85%。  相似文献   

20.
An output adjustable voltage reference generator for the 16-bit 100MS/s pipelined ADC is presented. An adjustable output voltage, fast-setting, high precision reference voltage buffer is designed by using current summing and floating current control techniques. In order to further improve the PSRR and reduce the output impedance, the push pull output and replica circuit structure is introduced. The prototype 16-bit 100MS/s ADC is fabricated by 0.18μm 1.8V 1P6M CMOS technology.Test results show that the voltage reference generator consumes an area of 1.3mm×2.0mm, and the power consumption is 23mW. The average temperature coefficient of the output voltage is 16×10-6-1 in the range of -55℃ to 125℃. The 16-bit 100MS/s ADC achieves the SNR of 76.3dBFS and SFDR of 89.2dBc, with 10.1MHz input at the full sampling speed, and it consumes the power of 300mW and occupies an area of 3.5mm×5.0mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号