首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid solutions of 2H -SiC/AlN can be prepared at temperatures less than 1600°C by rapid pyrolysis ("hot drop") of mixtures of [(Me3Si)0.80((CH2=CH)MeSi)1.0(MeHSi)0.35] n (VPS) or [MeHSiCH2] n (MPCS) with [R2AlNH2]3, where R=Et, i -Bu or simply by slow pyrolysis of the precursor mixture in the case of [Et2AlNH2]3. In contrast, slow pyrolysis of mixtures of VPS or MPCS with [ i -Bu2AlNH2]3 yields a composite of 2 H -AlN and 3 C -SiC at 1600°C, which transforms into a single 2 H -SiC/AlN solid solution on heating to 2000°C. The influences of the nature of the precursor and processing conditions on the structure, composition, and purity of the SiC/AlN materials are discussed.  相似文献   

2.
Ultrafine aluminum carbide (Al4C3) powders with crystallite sizes of <40 nm were prepared by the pyrolyses of alkylaluminums, i.e., trimethylaluminum (Al(CH3)3: TMAL), triethylaluminum (Al(C2H5)3: TEAL), triisobutylaluminum (Al(i-C4H9)3: TIBAL) at a temperature between 950° and 1100°C. Although the pyrolysis of TMAL produced Al4C3 at 950°C, the pyrolysis temperature of TEAL to produce Al4C3 was raised up to 1100°C. The pyrolysis of TIBAL at 1100°C produced not only crystalline Al4C3 but also amorphous oxycarbide. The TEAL-derived powder had the highest true density (2.89 g.cm−3 or 97% of the theoretical density) among the three kinds of powders.  相似文献   

3.
Nano-sized TiO2 powders were prepared by controlled hydrolysis of TiCl4 and Ti(O-i-C3H7)4 solutions and nitrided in flowing NH3 gas at 700°–1000°C to form TiN. Nano-sized TiN was densified by spark plasma sintering at 1300°–1600°C to produce TiN ceramics with a relative density of 98% at 1600°C. The microstructure of the etched ceramic surface was observed by SEM, which revealed the formation of uniformly sized 1–2 μm grains in the TiCl4-derived product and 10–20 μm in the Ti(O-i-C3H7)4-derived TiN. The electric resisitivity and Vickers micro-hardness of the TiN ceramics was also measured.  相似文献   

4.
Anatase-type TiO2 powder containing sulfur with absorption in the visible region was directly formed as particles with crystallite in the range 15–88 nm by thermal hydrolysis of titanium(III) sulfate (Ti2(SO4)3) solution at 100°–240°C. Because of the presence of ammonium peroxodisulfate ((NH4)2S2O8), the yield of anatase-type TiO2 from Ti2(SO4)3 solution was accelerated, and anatase with fine crystallite was formed. Anatase-type TiO2 doped with ZrO2 up to 9.8 mol% was directly precipitated as nanometer-sized particles from the acidic precursor solutions of Ti2(SO4)3 and zirconium sulfate in the presence and the absence of (NH4)2S2O8 by simultaneous hydrolysis under hydrothermal conditions at 200°C. By doping ZrO2 into TiO2 and with increasing ZrO2 content, the crystallite size of anatase was decreased, and the anatase-to-rutile phase transformation was retarded as much as 200°C. The anatase-type structure of ZrO2-doped TiO2 was maintained after heating at 1000°C for 1 h. The favorable effect of doping ZrO2 to anatase-type TiO2 on the photocatalytic activity was observed.  相似文献   

5.
The conditions for preparing α-aluminum silicon carbide (α-Al4SiC4) were examined by heating stoichiometric mixtures of ultrafine A14C3 and SiC powders with sizes of <0.1 μm at and below 1600°C. The starting A14C3 powder was obtained by the pyrolysis of trimiethylaluminum; the starting SiC powders were obtained by the pyrolyses of triethylsilane (3ES), tetraethylsilane (4ES), and hexamethyldisilane (6MDS). The reactivity of SiC with Al4C3 to form α-Al4SiC4 varies according to the kind of starting alkylsilane: 3ES > 4ES > 6MDS. The reaction of 3ES-derived SiC with A14C3 produced α-Al4SiC4 at temperatures as low as 1400°C for 240 min, regardless of the presence of A14C3 (trace). Only α-Al4SiC4 was formed at and above 1500°C for 60 min; the crystal growth was appreciable.  相似文献   

6.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

7.
The reactions of stoichiometric Y2O3, CuO, and different barium salts (BaCO3, Ba(NO3)2, BaO2, BaCuO2) for forming various compounds in the yttrium-barium-copper-oxygen system (i.e., YBa2Cu3O7–δ, BaCuO2, Y2BaCuO5, and Y2Cu2O5) were systematically investigated by thermal analysis and X-ray diffractometry. In a few cases, the relevant activation energies were calculated. The reaction pathway and kinetics were significantly dependent on the physicochemical and thermal stability of the barium precursors, as well as on the crystalline size of the reagent. Binary BaO-CuO phases formed at low temperature (650°–700°C) when in the presence of easy-to-decompose barium precursors, and then slowly transformed to ternary compounds; in contrast, when barium ions were released at temperatures of >900°C, ternary phases formed directly from the components.  相似文献   

8.
Calcium hexa-aluminate (CaO·6Al2O3) has been prepared from calcium nitrate and aluminum sulfate solutions in the temperature range of 1000°–1400°C. A 0.3 mol/L solution of aluminum sulfate was prepared, and calcium nitrate was dissolved in it in a ratio that produced 6 mol of Al2(SO4)3·16H2O for each mole of Ca(NO3)2·4H2O. It was dried over a hot magnetic stirrer at ∼70°C and fired at 1000°–1400°C for 30–360 min. The phases formed were determined by XRD. It was observed that CaO·Al2O3 and CaO·2Al2O3 were also formed as reaction intermediates in the reaction mix of CaO·6Al2O3. The kinetics of the formation of CaO·6Al2O3 have been studied using the phase-boundary-controlled equation 1 − (1 − x )1/3= K log t and the Arrhenius plot. The activation energy for the low-temperature synthesis of CaO·6Al2O3 was 40 kJ/mol.  相似文献   

9.
Mixtures of La2O3 and Al2O3 with various La contents were prepared by co-precipitation from La(NO3)3 and Al(NO3)3 solutions and calcined at 800° to 1400°C. The addition of small amounts of La2O3 (2 to 10 mol%) to Al2O3 gives rise to the formation of lanthanum β-alumina (La 2 O3·11–14Al2O3) upon heating to above 1000°C and retards the transformation of γ-Al2O3 to α-Al2O3 and associated sintering.  相似文献   

10.
The isothermal shrinkage behaviors of fine zirconia powders (containing 2.8–2.9 mol% Y2O3) with specific surface areas of about 6 and 16 m2/g were investigated to clarify the effect of specific surface area on the initial sintering stage. The shrinkage of powder compact was measured under constant temperatures in the range of 1000°–1100°C. The increase in specific surface area enhanced the densification rate with increasing temperature. The values of activation energy ( Q ) and frequency-factor term (β0) of diffusion at initial sintering were estimated by applying the sintering-rate equation to the isothermal shrinkage data. The Q of diffusion changes little but the β0 increases with the increase in specific surface area. It is therefore concluded that the increase in the specific surface area of fine zirconia powder enhances the shrinkage rate because of an increase in the β0 at the initial stage of sintering.  相似文献   

11.
Solid-state equilibria at 1000°C were determined in the Fe2O3-FePO4-Co3(PO4)2-CoO area of the Fe-Co-P-O system in air. Two new ternary compounds were observed: CoFe(PO4)O, an oxyphosphate which melts incongruently at 1130°C, and Co3Fe4(PO4)6, an orthophosphate which melts incongruently at 1080°C. The ramifications of the liquidus behavior for the formation of rapidly solidified cobalt ferrite from cobalt ferrite-phosphate melts are discussed.  相似文献   

12.
Mixtures of Zr(OH)4 and ZrO2 particles, ∼10 nm in size, were hydrothermally treated in 0.25–1.5 mol/L H2SO4 solutions at a temperature of 200°C. After 3 h, very short ZrO2 fibers, 10–30 nm in length, were obtained, with no other zirconium compounds observed. The particles grew with treatment time and resulted in whisker particles. In a higher concentration (3 mol/L) H2SO4 solution, ZrO2 whiskers were not obtained, and clear solutions resulted with the starting ZrO2 particles remaining. It was concluded that Zr(OH)4 was useful as a starting material and that nanosized ZrO2 particles served as seed crystals for whisker formation.  相似文献   

13.
The thermodynamic properties of the α and β polymorphs of NiMoO4 were directly investigated by calorimetry. The standard entropies of formation, Δf S ° T , of α and β were determined from measuring the molar heat capacity, C p,m, from near absolute zero (2 K) to high temperature (1380 K) by a relaxation method and differential scanning calorimetry. The standard enthalpies of formation, Δf H ° T , of α and β were determined by combining C p,m with the standard enthalpy of formation, Δf H °298, at 298 K obtained from drop solution calorimetry in molten sodium molybdate at 973 K. The standard Gibbs energies of formation, Δf G ° T , of α and β were determined from their Δ f S ° T and Δ f H ° T values. The Δ f G ° T values indicate that the polymorphic transformation from α to β occurs at 1000 K, consistent with the observed phase transformation at 1000 K.  相似文献   

14.
Flame spray pyrolysis of a polymeric precursor is used to prepare ultrafine powders that, when sintered, convert to essentially pure phase lithium-doped sodium β"-alumina. The precursor Na1.67 Al10.67 Li0.33 [N(CH2CH2O)3]10.67-[OCH2CH2O]·x(HOCH2CH2OH) has been synthesized from stoichiometric amounts of metal hydroxides and tri-ethanolamine (N(CH2CH2OH)3, TEA) in excess ethylene glycol. The precursor is dissolved in ethanol, and an atom-ized spray of the solution is combusted in a specially con-structed flame spray apparatus. Combustion occurs at ∼2000°C, followed by immediate quenching. This proce-dure provides for a measure of kinetic control over the process. The resulting nanopowder particles are 50–150 nm in diameter and exhibit powder X-ray diffractometry pat-terns similar to β"-alumina. Heating the nanopowder at 30°C/min to 1200°C with a 1 hisotherm converts it to pure β"-alumina. In preliminary sintering studies, green powder compacts (∼65% theoretical density) sintered at 1600°C for 12 min densify to 3.0 ± 0.1 g/cm 3 (∼92% theoretical density) with minimal loss of Na2O. This procedure offers several processing and cost advantages over conventional β"-alumina syntheses.  相似文献   

15.
Manganese dioxide (α-MnO2) thin films have been explored as a cathode material for reliable glass capacitors. Conducting α-MnO2 thin films were deposited on a borosilicate glass substrate by a chemical solution deposition technique. High carbon activities originated from manganese acetate precursor, (Mn(C2H3O2)2·4H2O) and acetic acid solvent (C2H4O2), which substantially reduced MnO2 phase stability, and resulted in Mn2O3 formation at pyrolysis temperature in air. The α-MnO2 structure was stabilized by Ba2+ insertion into a (2 × 2) oxygen tunnel frame to form a hollandite structure. With 15–20 mol% Ba addition, a conducting α-MnO2 thin film was obtained after annealing at 600–650°C, exhibiting low electrical resistivity (∼1 Ω·cm), which enables application as a cathode material for capacitors. The hollandite α-MnO2 phase was stable at 850°C, and thermally reduced to the insulating bixbyte (Mn2O3) phase after annealing at 900°C. The phase transition temperature of Ba containing α-MnO2 was substantially higher than the reported transition temperature for pure MnO2 (∼500°C).  相似文献   

16.
Tungsten cobalt carbides and oxides can be obtained via a single-step pyrolysis of an organometallic single-source precursor (eta5-C5H5)(CO)3WCo(CO)4 (1). Pyrolysis of 1 in an oxygen atmosphere produced WCoO4 at 600°C. In a nitrogen atmosphere W6Co6C was obtained when 1 was heated at 700°C. However, under vacuum, the pyrolysis of 1 produced the other phase-W3Co3C-at 700°C. Both carbides were contaminated with graphitic carbon, as indicated by their ESCA spectra. Powders that were obtained by using these procedures had particle sizes of up to 100 µm. Micrography showed that the particles were porous, which indicated outgassing during pyrolysis.  相似文献   

17.
Glasses in the Na2O–Ba0–A12O3-Si02 system, nucleated with TiO2, were heat-treated to effect controlled crystallization. Resulting materials consisted of a dense, micro-crystalline mixture of nepheline (Na20–A12O3-2SiO2) and barium feldspar (BaO-A12O3-2Si02) in a glassy matrix. Thermal expansion coefficients (O° to 300° C) of these bodies ranged from 75 to 125 × 10 –7/°C. Glazes in the Na2O-CaO-PbO-B2O2-A1203-SiO2 system having expansion coefficients of about 40 to 80 × 10 -7/0°C were applied to the glass-ceramics. On firing, the glazes matured well and reacted with the bodies to form interlocking crystals at the interface. This interfacial region was investigated using several instrumental techniques, and the crystals were identified as plagioclase feldspar. Applying these compressive glazes resulted in modular of rupture up to five times that of the initial glass-ceramic. Calculated strengths correlated well with experimental values.  相似文献   

18.
Aluminum nitride (AlN) powders were prepared from the oxide precursors aluminum nitrate, aluminum hydroxide, aluminum 2-ethyl-hexanoate, and aluminum isopropoxide (i.e., Al(NO3)3, Al(OH)3, Al(OH)(O2CCH(C2H5)(C4H9))2, and Al(OCH(CH3)2)3). Pyrolyses were performed in flowing dry NH3 and N2 at 1000°–1500°C. For comparison, the nitride precursors aluminum dimethylamide (Al(N(CH3)2)3) and aluminum trimethylamino alane (AlH3·N(CH3)3) were exposed to the same nitridation conditions. Products were investigated using XRD, TEM, EDX, SEM, and elemental analysis. The results showed that nitridation was primarily controlled by the water:ammonia ratio in the atmosphere. Single-phase AlN powders were obtained from all oxide precursors. Complete nitridation was not obtained using pure N2, even for the non-oxide precursors.  相似文献   

19.
The crystal structures of the high-temperature forms of light lanthanide pyrosilicates (disilicates), i.e., (La-to-Sm)2Si2O7, have been studied with powder X-ray diffraction on the quenched samples. These compounds have monoclinic structures with the space group P21 /n rather than orthorhombic structures. In the research of the last two decades, the smallness of the monoclinic angles (90.1°–91°) has possibly obscured the revelation of the true structural nature of these compounds. New XRD patterns are suggested for the studied lanthanide pyrosilicates exhibiting the monoclinic characteristics of the unit cells.  相似文献   

20.
The oxidation kinetics of hot-pressed Mo(Al0.01Si0.99)2 and Mo(Al0.1Si0.9)2 were measured at 480°C, and between 1200° and 1600°C. The qualitative oxidation of arc-melted Mo(Al0.1Si0.9)2, Mo(Al0.3Si0.7)2, Mo(Al0.5Si0.5)2, and Mo3Al8 was examined after 600°C for 1000 h in air. At all temperatures, the compositional difference between the materials yielded very different oxidation rates and scale microstructures. At 1400° and 1500°C, microstructural evolution of the oxide scales resulted in improved oxidation resistance at long times (>400 h). At these temperatures, a significant reduction in the long-time oxidation kinetics was correlated with the in situ formation of an inner mullite scale. At 480° and 600°C, oxidation resistance improved significantly with increasing aluminum concentration. Contrary to the behavior of MoSi2, samples of Mo(Al0.01Si0.99)2 did not demonstrate catastrophic oxidation, and samples of Mo(Al0.1Si0.9)2 were very oxidation resistant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号