首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
研究了一维CaSO4晶须、二维滑石粉、三维重质CaCO3和零维纳米CaCO3对复合改性聚氯乙烯(PVC)的力学性能影响,分析了改变多维无机材料的比例对改性PVC的性能影响。结果表明,与其他无机材料复合改性PVC相比,一维CaSO4晶须、二维滑石粉、三维重质CaCO3复合改性PVC的综合性能最好,加工性能最佳;一维CaSO4晶须和零维纳米CaCO3添加量为10份时复合改性PVC的冲击性能达到最大值;一维CaSO4晶须、三维重质CaCO3、二维滑石粉按照4/2/1的质量比复合改性PVC时综合性能最佳。  相似文献   

2.
PVC与纳米碳酸钙复合材料的结构与性能研究   总被引:2,自引:0,他引:2  
采用拉伸强度、断裂伸长率、冲击强度等力学参数对聚氯乙烯(PVC)/纳米CaCO3复合材料进行评价,并结合热重差示扫描量热仪、扫描电镜对复合材料的热稳定性和断面结构进行表征.结果表明:采用超声分散方法,选用NDZ-311/SG-Al 821复合改性剂改性的纳米CaCO3明显提高了PVC基复合材料的缺口冲击强度、断裂伸长率和热稳定性;当纳米CaCO3填充质量分数达15%时,PVC/纳米CaCO3复合材料的缺口冲击强度达22.34 kJ/m2,比未填充纳米CaCO3的提高了60.5%;当纳米CaCO3填充质量分数不高于20%时,用超声技术改性纳米CaCO3能很好地分散在PVC基体中.  相似文献   

3.
研究了表面改性微米重质CaCO3填充的聚氯乙烯(PVC)树脂所得PVC/CaCO3复合材料的结构和热力学与机械性能。结果表明,改性微米重质CaCO3的填充能明显提高PVC基复合材料的缺口冲击强度和维卡软化温度。当填充质量分数20%的改性微米重质CaCO3后,PVC/CaCO3复合材料的冲击强度为20.92kJ/m^2,比未加微米重质CaCO3的提高了49.9%。扫描电镜(SEM)观察复合材料的表面形态,发现拉伸断面有拉丝现象。热失重-差示扫描量热分析发现,微米重质CaCO3对PVC基复合材料分解有一定的抑制作用。  相似文献   

4.
改性超细重质碳酸钙在硬质PVC中的应用   总被引:1,自引:0,他引:1  
对超细重质CaCO3进行了湿法改性和复合改性,采用红外光谱图对改性后的超细重质CaCO3进行了表征,采用SEM观察了其在PVC基体中的分散情况及试样的冲击断面,测试了其对试样力学性能的影响。结果表明:对超细重质CaCO3进行表面改性后,铝酸酯接枝到了超细重质CaCO3表面,提高了超细重质CaCO3在PVC中的分散性,试样冲击断面存在着大量牵伸结构和拉丝现象,因而提高了试样的拉伸强度和冲击强度(当超细重质CaCO3用量为5份时拉伸强度最高,当超细重质CaCO.用量为15份时冲击强度最高),且复合改性比湿法改性的效果好。  相似文献   

5.
合成了纳米CaCO3表面改性剂AP-01,将此改性剂改性的纳米CaCO3用于硬质聚氯乙烯(PVC)抗冲改性.观察PVC/改性纳米CaCO3复合材料的微观结构,并测试其力学性能.结果表明:改性纳米CaCO3以海岛结构分散于PVC基体中.改性纳米CaCO3加入量在10%时,复合材料缺口冲击强度达到18.2 kJ/m2,而复合材料拉伸强度几乎没有改变.对比普通硬脂酸改性纳米CaCO3增韧PVC,其具有明显的性能优势.  相似文献   

6.
张宁 《塑料科技》2012,40(2):40-44
用CPE与CaCO3复配制备出高韧性PVC复合材料,研究了CPE、CaCO3对PVC复合材料力学性能的影响。结果表明:CPE能有效提高PVC的冲击强度;CaCO3在一定用量范围内,可以提高PVC的冲击强度;CPE与CaCO3协同增韧,PVC复合材料的冲击强度可达60 kJ/m2,拉伸强度约为37 MPa,断裂伸长率可达65%。  相似文献   

7.
本文用超细碳酸钙(CaCO3)作为隔离剂和不同的包覆剂,通过凝聚法制备粉末丁苯橡胶(PBSR).当超细CaCO3与PBSR质量比为50/100,包覆剂Coron树脂结构组成中马来酸酐和苯乙烯质量比为7/3,用量占PSBR质量的9%时,所得的超细CaCO3/PSBR粒径小于1mm,比未加超细CaCO3的PSBR小一倍左右.当PSBR/PVC的质量比为15/100,CaCO3/PSBR与PVC混合制得复合材料的拉伸强度比PSBR与PVC制得复合材料提高了约15%,缺口冲击强度提高了60%左右.  相似文献   

8.
碳酸钙晶须制备及其对聚丙烯的改性   总被引:1,自引:0,他引:1  
研究了碳酸钙(CaCO3)晶须的制备方法,探索了以氯化镁(MgCl2)为促进剂时CaCO3晶须生长的影响因素,试验得到了制备CaCO3晶须的最佳条件。采用红外光谱、拉曼光谱等对CaCO3晶须结构进行了性能和结构表征,发现所制备的产物中晶须含量达97%(质量分数),长径比(L/D)为20~30。探讨了所制晶须对聚丙烯(PP)材料改性的效果,结果表明,晶须改性PP的力学性能、流动性明显优于普通重质CaCO3填充PP的。与纯PP相比,在填充量15%(质量分数)的情况下,CaCO3晶须改性的PP,其拉伸断裂强度提高35.7%,弯曲模量提高117%,冲击强度提高31.5%,熔体流动速率基本不下降。  相似文献   

9.
纳米CaCO_3/PVC共混体系的研究   总被引:14,自引:0,他引:14  
研究了纳米级CaCO3 粒子的微观形态 ,以及纳米CaCO3/PVC共混体系的流变性能和力学性能。结果表明 ,纳米CaCO3 加入量为 9质量份时 ,纳米CaCO3/PVC共混体系的缺口冲击强度可达到 31 4kJ/m2 。纳米Ca CO3 对PVC共混体系具有显著的增韧效果  相似文献   

10.
对纳米碳酸钙(nano-CaCO3)表面恰当处理后,与聚氯乙烯(PVC)、氯乙烯-丙烯酸丁酯共聚弹性体(VC-BA)组成三元复合体系,详细研究了该复合体系的加工工艺及其组成与所制材料力学性能之间的关系。当复合母粒中VC-BA与CaCO3的质量比为2∶3时,材料的力学性能最佳,CaCO3对材料具有补强作用,并且CaCO3和VC-BA能协同增韧PVC,使材料的冲击强度得到大幅度提高,当PVC和复合母粒质量比为100∶20时,材料的冲击强度达到49.5kJ/m2,拉伸强度仍高达51.0MPa。  相似文献   

11.
采用熔融挤出过程中改变螺杆转速和添加引发剂的复合引发方法制备了马来酸酐接枝三元乙丙橡胶(EPDM-g-MAH),将其单独或与CaCO_3混合后改性聚酰胺66(PA66)。通过滴定分析、红外表征和熔体流动速率(MFR)测定等方法研究了175℃条件下螺杆转速对EPDM-g-MAH的MFR和接枝率的影响。探讨了接枝物和CaCO_3对PA66力学性能、热变形温度的影响。研究结果表明,改变螺杆转速可以有效控制接枝物凝胶含量(1%),提高接枝率和MFR;当接枝物用量为30份时,PA66/EPDM-g-MAH复合材料的简支梁缺口冲击强度为34.24 k J/m2,是纯PA66的3.89倍;当CaCO_3用量小于15份时,两种CaCO_3与EPDM-g-MAH均能够协同增韧PA66,当PA66/EPDM-g-MAH/CaCO_3配比为100/30/10时,加入超细活性重质CaCO_3及纳米CaCO_3的复合材料的简支梁缺口冲击强度均达到最大值,分别为纯PA66的4.35倍和4.10倍,超细活性重质CaCO_3的作用优于纳米CaCO_3。超细活性重质CaCO_3用量为20份时,PA66/EPDM-g-MAH复合材料的弯曲强度、热变形温度及MFR最佳,分别为59.42 MPa、81.6℃及9 g/(10 min)。  相似文献   

12.
张宁 《塑料工业》2012,40(3):69-73
分别研究了1 250目、2 500目CaCO3以及甲基丙烯酸-丁二烯-苯乙烯共聚物(MBS)对聚氯乙烯(PVC)力学性能的影响;并且选用15%MBS与1 250目CaCO3复配制备出了高韧性的PVC材料。结果表明:MBS能有效提高PVC的冲击强度;1 250目CaCO3与2 500目CaCO3相比,更易于分散,增韧的效果更好;MBS与1 250目CaCO3协同增韧,使PVC冲击强度达120 kJ/m2,拉伸强度约为37 MPa,断裂伸长率在40%左右。  相似文献   

13.
研究了PVC/粉煤灰微珠复合材料、PVC/CaCO3复合材料的力学性能。实验结果表明:当粉煤灰微珠添加量为5份时,PVC/粉煤灰微珠复合材料的室温缺口冲击强度为46 kJ/m2,拉伸强度为47 MPa达到最大值;弯曲模量随着粉煤灰微珠增加呈线性增加;PVC/粉煤灰微珠复合材料的综合力学性能要好于PVC/CaCO3复合材料。SEM测试表明:经表面改性后的粉煤灰微珠在PVC基体中具有很好的分散性和相容性。  相似文献   

14.
研究了 PVC/Elvaloy74 1 /MBS及 PVC/Elvaloy74 1 /MBS/Ca CO3共混填充新体系 ,并对其物理机械性能的测试结果进行了讨论。结果表明 :当 PVC为 1 0 0份、Elvaloy74 1为 6份、MBS用量为 2 5.5份时 ,体系冲击强度达到 4 6.3 k J/m2 ,且综合性能良好 ;该三元共混体系在填充大量 Ca CO3(1 0 0份 )时 ,仍能保持较高的缺口冲击强度 (1 7k J/m2 ) ,显示出良好的填充性  相似文献   

15.
研究了PVC/Elvaloy741/MBS及PVC/Elvaloy741/MBS/CaCO3共混填充新体系,对其物理机械性能的测试结果进行了讨论。结果表明:当PVC为100份、Elvaloy741为6份、MBS用量为25.5份时,体系冲击强度达到46.3kJ/m^2,且综合性能良好;该三元共混体系的填充大量CaCO3(100份)时,仍能保持较高的缺口冲击强度(17kJ/m^2),显示出良好的填充性。  相似文献   

16.
CPE对纳米CaCO3增韧PVC复合材料界面和性能的影响   总被引:5,自引:0,他引:5  
研究了CaCO3/CPE(氯化聚乙烯)/PVC(聚氯乙烯)纳米复合材料的结构和性能,探讨了CPE对纳米CaCO3/PVC复合材料界面作用和力学性能的影响. SEM结果显示,引入CPE可明显改善纳米CaCO3颗粒在PVC基体中的分散性和相容性,提高其界面作用. 引入界面作用参数定量表征纳米CaCO3颗粒与基体之间的界面结合作用,证实随着CPE加入量的增大,基体和颗粒之间的界面作用逐渐增大. 力学性能研究表明,相对于仅用纳米CaCO3增韧PVC,在CPE加入量为PVC的0~8%(w)范围内,用CPE和纳米CaCO3协同增韧可以更好地提高复合材料的冲击强度. 复合材料的冲击强度在CaCO3/CPE/PVC质量比为25/8/100时达到纯PVC的5.6倍,是纳米CaCO3/PVC(25/100)体系的2倍.  相似文献   

17.
纳米级无机粒子对聚乙烯的增强与增韧   总被引:50,自引:2,他引:50  
黄锐  徐伟平 《塑料工业》1997,25(3):106-108
对μm级CaCO3、TiO2和nm级SiC/Si3N4粒子填充LDPE的性能进行了研究。实验证明,μm级粒子对LDPE虽无明显的增强增韧作用,但也未使基体的机械性能大幅度下降。nm级SiC/Si3N4对LDPE有较大的增强增韧作用,在5%质量分数时冲击强度出现最大值,缺口冲击强度达55.7kJ/m2为纯LDPE的203%;伸长率到625%时仍未断裂,为纯LDPE的500%,但熔体流动速率急剧下降,仅为纯LDPE的26%,当含量在3%和15%质量分数时,熔体流动速率分别为纯LDPE的337%和151%。  相似文献   

18.
将3种不同形貌的碳酸钙(CaCO3)(立方体、纺锤形、球形)填充聚丙烯(PP)树脂,考察了未负载CaCO3和CaCO3负载庚二酸对PP结晶性能和力学性能的影响。结果表明,未负载的CaCO3主要起到增刚的作用,其中纺锤形CaCO3对PP力学性能的影响最小;负载β成核剂后的CaCO3起到增韧的作用,出现了明显的β结晶峰;立方体CaCO3对PP的刚性影响最小,纺锤体CaCO3可将冲击强度由最初的4.48 kJ/m2提高到5.57 kJ/m2;负载庚二酸后,CaCO3粒径越小其增韧效果越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号