首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Based on the calibration requirements of vacuum low background aerospace infrared remote sensing radiance temperature, a high-precision vacuum blackbody (H500 type) is developed for the temperature range from ??93 °C to +?220 °C at the National Institute of Metrology, China. In this paper, the structure and the temperature control system of H500 are introduced, and its performance, such as heating rate and stabilization of temperature control, is tested under the vacuum and low-background condition (liquid-nitrogen-cooled shroud). At room temperature and atmospheric environment, the major technical parameters of this blackbody, such as emissivity and uniformity, are measured. The measurement principle of blackbody emissivity is based on the control of surrounding radiation. Temperature uniformity at the cavity bottom is measured using a standard infrared radiation thermometer. When the heating rate is 1 °C min?1, the time required for the temperature to stabilize is less than 50 min, and within 10 min, the variation in temperature is less than 0.01 °C. The emissivity value of the blackbody is higher than 0.996. Temperature uniformity at the bottom of the blackbody cavity is less than 0.03 °C. The uncertainty is less than 0.1 °C (k?=?2) over the temperature range from ??93 °C to +?67 °C.  相似文献   

2.
Low-temperature cavity-type blackbodies (BB), VTBB and BB100K1, are developed at VNIIOFI for operation as IR radiation sources of the Middle Background Calibration Facility in the temperature range from ?60 °C to 90 °C, which is being constructed by KRISS for calibration of multi-spectral cameras for space applications. The VTBB model, featured by a 30 mm output aperture and hermetic housing and flange for mounting to a vacuum chamber, covers the complete temperature range under a vacuum environment (up to 10?2 Pa), and the temperature range from 20 °C to 90 °C under open air conditions. BB100K1 has a wide aperture of 100 mm diameter, which shows stable operation in the temperature range from ?60 °C to 90 °C inside a vacuum chamber, and in the temperature range from ?40 °C to 90 °C in a dry-air or inert-gas environment with the usage of an extra hood with an aperture. The effective emissivity of the radiating cavities of both BB, covered with Lord Aeroglaze Z306 black paint, was calculated with the usage of STEEP3 Monte-Carlo simulation software, taking the measured temperature gradients into account. The numerical calculations yield an emissivity of at least 0.9997 for the VTBB cavity, and 0.997 for the BB100K1 cavity. The radiating cavity temperature of VTBB and BB100K1 is stabilized at the level of ±0.01 °C by means of an external precise closed-loop liquid thermostat (Huber Unistat 705 model). The temperature distribution along the radiating cavities and across the BB bottoms is monitored by five precision PRT thermometers and a digital multimeter equipped with a scanner card. Experimental tests using a thermal camera at KRISS demonstrated high-temperature uniformity of both radiation sources not exceeding ±50 mK over the entire temperature range, in vacuum as in a dry-air environment. The combined standard uncertainty of VTBB and BB100K1 temperature measurements accounts for about 40 mK within the range of their working temperatures.  相似文献   

3.
A new experimental facility was realized at the PTB for reduced-background radiation thermometry under vacuum. This facility serves three purposes: (i) providing traceable calibration of space-based infrared remote-sensing experiments in terms of radiation temperature from  −173 °C to 430 °C and spectral radiance; (ii) meeting the demand of industry to perform radiation thermometric measurements under vacuum conditions; and (iii) performing spectral emissivity measurements in the range from 0 °C to 430 °C without atmospheric interferences. The general concept of the reduced background calibration facility is to connect a source chamber with a detector chamber via a liquid nitrogen-cooled beamline. Translation and alignment units in the source and detector chambers enable the facility to compare and calibrate different sources and detectors under vacuum. In addition to the source chamber, a liquid nitrogen-cooled reference blackbody and an indium fixed-point blackbody radiator are connected to the cooled beamline on the radiation side. The radiation from the various sources is measured with a vacuum infrared standard radiation thermometer (VIRST) and is also imaged on a vacuum Fourier-transform infrared spectrometer (FTIR) to allow for spectrally resolved measurements of blackbodies and emissivity samples. Determination of the directional spectral emissivity will be performed in the temperature range from 0 °C to 430 °C for angles from 0° to ±70° with respect to normal incidence in the wavelength range from 1 μm to 1,000 μm. References to commercial products are provided for identification purposes only and constitute neither endorsement nor representation that the item identified is the best available for the stated purpose.  相似文献   

4.
As infrared remote sensors are very important parts of Earth observation satellites, they must be calibrated based on the radiance temperature of a blackbody in a vacuum chamber prior to launch. The uncertainty of such temperature is thus an essential component of the sensors’ uncertainty. This paper describes the vacuum radiance-temperature standard facility (VRTSF) at the National Institute of Metrology of China, which will serve to calibrate infrared remote sensors on Chinese meteorological satellites. The VRTSF can be used to calibrate vacuum blackbody radiance temperature, including those used to calibrate infrared remote sensors. The components of the VRTSF are described in this paper, including the VMTBB, the LNBB, the FTIR spectrometer, the reduced-background optical system, the vacuum chamber used to calibrate customers’ blackbody, the vacuum-pumping system and the liquid-nitrogen-support system. The experimental methods and results are expounded. The uncertainty of the radiance temperature of VMTBB is 0.026 °C at 30 °C over 10 μm.  相似文献   

5.
A thermal infrared radiation thermometer was jointly developed by the Physikalisch-Technische Bundesanstalt and Raytek GmbH for temperature measurements from − 150°C to 170°C under vacuum. The radiation thermometer is a purpose-built instrument to be operated with the PTB reduced-background infrared calibration facility. The instrument is a stand-alone system with an airtight housing that allows operation inside a vacuum chamber, attached to a vacuum chamber, and in air. The radiation thermometer will serve to calibrate thermal radiation sources, i.e., blackbody radiators, by comparing their radiance temperature to that of a variable-temperature reference blackbody inside the reduced-background calibration facility. Furthermore, since it can be operated under vacuum and in air, the instrument also allows the water- and ammonia-heat-pipe reference blackbodies of the PTB low-temperature calibration facility operated in air to be compared with the variable-temperature blackbody operated under vacuum. Finally, provided that sufficient long-term stability is achieved, the instrument shall be used as a transfer radiation thermometer to carry and compare the temperature scale of PTB by means of radiation thermometry to remote-sensing calibration facilities outside PTB. The mechanical, optical, and electrical designs of the instrument are reported. Results of investigations on the temperature resolution, size-of-source effect, and the reference function are given. The heat-pipe blackbodies operating in air are compared to the variable-temperature blackbody operated under vacuum by using the vacuum radiation thermometer. References to commercial products are provided for identification purposes only and constitute neither endorsement nor representation that the item identified is the best available for the stated purpose.  相似文献   

6.
A large aperture blackbody (LABB) with a diameter of 1 m has been successfully constructed for calibrating radiation thermometers and infrared radiometers with a wide field of view in the temperature range between 10 °C and 90 °C. The blackbody is a 1 m long cylindro-conical cavity with a diameter of 1.1 m. Its conical bottom has an apex angle of 120°. To achieve good temperature stability and uniformity, the cavity is integrated to a water-bath to which the pressurized water is supplied from a reservoir. To reduce the convection heat loss from the cavity to the ambient, the cavity is purged of the dried air that passes through a coiled tube immersed in the reservoir. For an uncertainty evaluation of the LABB, its temperature stability was measured by using a reference radiation thermometer (RRT) and a platinum resistance thermometer (PRT), and its radiance temperature distributions on the aperture plane were measured by using a thermal camera. Measuring the spectral emissivity of the coating material, the effective emissivity of the blackbody was calculated to be 0.9955 from 1 ??m to 15 ??m. The expanded uncertainty of the radiance temperature scale was evaluated based on the PRT readings, which vary from 0.3 °C to 0.5 °C (k = 2) in the temperature range. The temperature scale is validated by comparing with the RRT of which the temperature scale is realized by a multiple fixed-point calibration.  相似文献   

7.
The NMIJ has established a new calibration facility consisting of a 1.6??m radiation thermometer and three fixed-point blackbodies of indium (156.5985 °C), tin (231.928 °C), and zinc (419.527 °C) in the temperature range from 160 °C to 420 °C. The expanded uncertainties (k = 2) of the fixed-point blackbodies are estimated to be 28 mK for the In point, 22 mK for the Sn point, and 32 mK for the Zn point. The expanded uncertainties in the temperature scale of the 1.6??m radiation thermometer are estimated to be 40 mK to 77 mK. When this standard is used to calibrate devices under test to be used in industry, uncertainties (k = 2) of 61 mK for the In point, 67 mK for the Sn point, and 99 mK for the Zn point, 91 mK to 136 mK for a 1.6??m radiation thermometer, and 73 mK to 116 mK for a variable-temperature blackbody can be achieved.  相似文献   

8.
为满足红外遥感载荷实验室辐射定标需求,实现红外遥感辐射量值溯源到ITS-90国际温标,研制了真空镓固定点黑体辐射源.黑体腔开口直径为25 mm,深度220 mm,内部喷涂高发射率涂层,通过仿真计算黑体腔的发射率优于0.9999.在真空下测试了镓固定点相变坪台的复现性为4.4 mK,坪台稳定性优于2 mK.测量了镓固定点...  相似文献   

9.
介绍了中国计量科学研究院研制的真空汞固定点黑体辐射源的结构、工作原理、性能测试结果和不确定度分析。真空汞固定点黑体辐射源灌注的是纯度为99.9999%的高纯汞,黑体空腔开口直径为25 mm,空腔内径为28 mm,深度为260 mm,表面喷涂了NEXTEL 811-21高发射率涂层,采用基于蒙特卡罗黑体发射率仿真计算的方法,计算了黑体空腔在波长为8~14μm的发射率,结果优于0.9999;在真空环境下,测试了真空汞固定点黑体辐射源的温坪曲线和重复性等主要技术指标,结果表明真空汞固定点黑体辐射源温坪稳定性优于2 mK,多次重复性优于1 mK;分析了真空汞固定点黑体辐射源的不确定度来源,其合成标准不确定度为16 mK。  相似文献   

10.
Two high-temperature blackbodies were developed and tested. The first one is a graphite blackbody with a maximum temperature of 2000 °C, an opening of 40 mm, and an emissivity of 0.995. It is intended for the routine calibration of pyrometers. The second one is a small version of a pyrolytic graphite (PG) blackbody with a cavity diameter of 15 mm, an opening of 10 mm, and an emissivity of 0.9996. The blackbody has two options with maximum temperatures of 2500 °C and 3000 °C, respectively. With these, the list of high-temperature blackbodies developed at VNIIOFI consists of five PG types and one graphite type, which can be used in radiation thermometry as precision Planckian sources or furnaces for fixed-point applications. The article also describes modifications to the PG furnace, where PG heater rings are replaced partly or totally by graphite elements. Such modifications extend the lifetime of the heater, reduce the cost for some applications and, for some cases, improve the temperature uniformity.  相似文献   

11.
12.
介绍了中国计量科学研究院研制的中温区真空标准黑体辐射源的结构设计,工作原理,测试结果和不确定度评定.黑体辐射源工作温度范围为320~500 K,黑体空腔开口直径为50 mm,空腔深度为260 mm,表面喷涂了耐高温漆,空腔发射率优于0.999.真空环境下测试了黑体在335~500K温度范围内的轴向温度均匀性,温度稳定性...  相似文献   

13.
The replacement of ITS-90 temperature measurements by direct thermodynamic temperature measurements based on radiometric techniques in the temperature range above 1000 °C has been proposed by many national measurement laboratories. This article reports on work at NMIA to develop a simple and robust traceability scheme for thermodynamic temperature, based on the use of photometers and a Thermogage furnace with a graphite tube element modified to improve its temperature uniformity and emissivity. A simple luminance meter was constructed using a commercial photometer and pairs of precision apertures to view the rear of the blackbody cavity. This photometer was calibrated against NMIA reference illuminance lamps, and relative spectral responsivity measurements were used to determine the color-temperature correction between the lamps and the Thermogage blackbody. Thermodynamic temperature determinations made using various combinations of apertures and photometers showed a range of less than 0.2 °C at 1700 °C, consistent with the calculated uncertainty of 0.29 °C (k = 2). ITS-90 measurements made by NMIA??s LP5 and HTSP primary radiation thermometers with an uncertainty of 0.16 °C (k = 2), are consistent with the thermodynamic measurements. It is suggested that routine thermodynamic temperature determinations can now be made with an effort comparable to that required to realize the ITS-90 above 1000 °C.  相似文献   

14.
Blackbody cavities are the standard radiation sources widely used in the fields of radiometry and radiation thermometry. Its effective emissivity and uncertainty depend to a large extent on the temperature gradient. An experimental procedure based on the radiometric method for measuring the gradient is followed. Results are applied to particular blackbody configurations where gradients can be thermometrically estimated by contact thermometers and where the relationship between both basic methods can be established. The proposed procedure may be applied to commercial blackbodies if they are modified allowing secondary contact temperature measurement. In addition, the established systematic may be incorporated as part of the actions for quality assurance in routine calibrations of radiation thermometers, by using the secondary contact temperature measurement for detecting departures from the real radiometrically obtained gradient and the effect on the uncertainty. On the other hand, a theoretical model is proposed to evaluate the effect of temperature variations on effective emissivity and associated uncertainty. This model is based on a gradient sample chosen following plausible criteria. The model is consistent with the Monte Carlo method for calculating the uncertainty of effective emissivity and complements others published in the literature where uncertainty is calculated taking into account only geometrical variables and intrinsic emissivity. The mathematical model and experimental procedure are applied and validated using a commercial type three-zone furnace, with a blackbody cavity modified to enable a secondary contact temperature measurement, in the range between 400 °C and 1000 °C.  相似文献   

15.
A newly designed high-emissivity cylindrical blackbody source with a large diameter aperture (54 mm), an internal triangular-grooved surface, and concentric grooves on the bottom surface was immersed in a temperature-controlled, stirred-liquid bath. The stirred-liquid bath can be stabilized to better than 0.05°C at temperatures between 30 °C and 70 °C, with traceability to the ITS-90 through a platinum resistance thermometer (PRT) calibrated at the fixed points of indium, gallium, and the water triple point. The temperature uniformity of the blackbody from the bottom to the front of the cavity is better than 0.05 % of the operating temperature (in °C). The heat loss of the cavity is less than 0.03 % of the operating temperature as determined with a radiation thermometer by removing an insulating lid without the gas purge operating. Optical ray tracing with a Monte Carlo method (STEEP 3) indicated that the effective emissivity of this blackbody cavity is very close to unity. The size-of-source effect (SSE) of the radiation thermometer and the effective emissivity of the blackbody were considered in evaluating the uncertainty of the blackbody. The blackbody uncertainty budget and performance are described in this paper.  相似文献   

16.
介绍了中国计量科学研究院研制的100~400K真空红外亮温标准黑体辐射源的工作原理、结构、性能测试方法及测试结果。黑体辐射源通过液氮制冷与3温区控制实现了100~400K范围内的温度控制。在真空环境下,测试了其在温度范围100~400K轴向温度均匀性、底部温度稳定性等技术指标,结果表明均匀性优于0.120K,控温稳定性优于0.020K/20min;在室温大气环境下,利用基于控制环境辐射的发射率测量方法测量了黑体空腔发射率,空腔法向发射率为0.9998。采用基于蒙特卡罗黑体发射率仿真计算方法分析轴向温度均匀性对空腔发射率的影响,分析了标准黑体辐射源的不确定度来源,在8~16 μm波长亮度温度的合成标准不确定度优于0.030K。  相似文献   

17.
Preflight calibration of space-based observation systems (SOBS) is carried out by means of standard sources with known spectral radiance. There are no difficulties in preflight calibration of SOBS within the visible spectral range. The main problem here lies in achieving sufficiently high uniformity of spectral radiance across the radiating aperture of a large-area source. Standard blackbody radiance sources with the temperature that is measured and with the calculated emissivity are used for calibration of SOBS in the infrared (IR) spectral range. The emissivity of sources having an aperture as large as 500 mm cannot be calculated accurately enough, and they have to be measured. It is quite challenging to conduct the measurements in a vacuum chamber simulating the low earth orbit environment in a broad temperature range. A spectral radiance calibration facility for preflight calibration of SOBS which is based on using a large-area blackbody with a diameter of 500 mm and an operational temperature range from \(-60~^{\circ }\mathrm{C}\) to \(150~^{\circ }\mathrm{C}\) is presented. The facility includes a gallium fixed-point blackbody, a variable temperature blackbody with a temperature range from \(-60\,^{\circ }\mathrm{C}\) to \(150\,^{\circ }\mathrm{C}\) , a reference liquid nitrogen-cooled blackbody located in the vacuum chamber, and a Fourier transform IR spectrometer (FT-IR) used as a comparator. Radiation from the different sources is fed, in sequence, into the comparator by means of a custom-made optomechanical system located in the vacuum chamber. Operation of the calibration facility is described. Characteristics and specifications of the sources are shown.  相似文献   

18.
A comparison between two different types of thermal radiation sources maintaining near blackbody conditions has been carried out in the range from 50 to 500 °C. An infrared total radiation pyrometer was used as a transfer standard to measure the temperature of blackbodies. A thorough study of temperature distribution has been carried out for the large surface source in order to characterize the best location over the surface blackbody for temperature determination precisely of the order of better than 0.1 °C. The expanded uncertainty in the estimation of temperature of the radiating source in the above range of measurement was evaluated to be within ±0.24 °C at 50 °C and ±0.88 °C at 500 °C. The blackbody temperature sources found to be suitable for calibration of infrared total radiation pyrometers and thermal imaging devices in the operational range as mentioned above for laboratory use or other industrial and medical applications.  相似文献   

19.
Body temperature is a basic vital sign of the human body, and the use of infrared ear thermometers for medical diagnosis and health management on human bodies has been widespread nowadays. To gain credibility and confidence in the usage of IR ear thermometers, a standard blackbody source (BBS) with a calibration traceable to ITS-90 is necessitated. Three types of cavity-shaped blackbodies (designated BBC-A, BBC-E, and BBC-J) vertically immersed in a temperature-controlled stirred water bath were developed at the Center for Measurement Standards (CMS) as standard BBSs to calibrate and verify 14 commercial IR ear thermometers produced by six manufacturers. The basic structure of each cavity was designed based on the informative examples recommended in ASTM E-1965, EN 12470-5, and JIS T 4207 standards. The temperature of the blackbody cavity shall be represented by the water temperature near the bottom of the cavity that is measured using an immersed platinum resistance thermometer (PRT) for which the calibration is traceable to our national standard and with an uncertainty no greater than 0.03 °C (k = 2). The water bath was evaluated using the PRT to be stable within ±3.5 mK over 1 h and uniform within ±1.1 mK. Three types of BBSs were compared and analyzed utilizing two IR ear thermometers of 0.01 °C resolution as well as the statistical technique of analysis of variance (ANOVA). On the contrary, IR ear thermometers were tested and verified against three BBSs at three blackbody temperatures of 35.5 °C, 37 °C, and 41 °C. The analysis results of ANOVA showed that there is no significant temperature difference among three different structured blackbodies, and the average measured radiance temperature of three BBSs at 35.5 °C, 37 °C, and 41 °C were within 0.026 °C, 0.024 °C, and 0.027 °C of each other. Three among fourteen IR ear thermometers tested were outside of the 0.2 °C MPE (maximum permissible error) recommended by ASTM E-1965, EN 12470-5, or JIS T 4207 standards while BBC-A and BBC-E were used; however, four were outside of MPE requirement when BBC-J was used.  相似文献   

20.
Over the temperature range from 156 to 962°C, the NPL maintains a series of heatpipe blackbody sources for the calibration of customer sources, radiation thermometers, and thermal imagers. The temperature of each of the sources is determined using a calibrated platinum resistance thermometer or gold-platinum thermocouple placed close to the radiating surface at the back of the cavity. The integrity of such a blackbody source relies on it having good temperature uniformity, a high and well-known effective emissivity, and having the sensor in good thermal contact with the cavity. To verify the performance of the blackbody sources, it is necessary to use an infrared thermometer that has been independently calibrated to compare the radiance temperature of the source with the temperature measured by the contact sensor. Such verification of the NPL blackbodies has been carried out at short wavelengths: from 500 to 1,000°C using the NPL LP2 calibrated using the NPL gold point, and at 1.6 μm using an InGaAs-based radiation thermometer calibrated at a series of fixed-points from indium (156°C) to silver (962°C). Thermal imaging systems traditionally operate over the 3–5 μm waveband and are calibrated using NPL sources. Up until now, it has not been possible to verify the performance of the sources in this waveband except indirectly by cross-comparison of the sources where they overlap in temperature. A mid-infrared (nominally 3–5 μm) radiation thermometer has, therefore, been designed, constructed, and validated at NPL. The instrument was validated and calibrated using the fixed-point blackbody sources and then used to validate the heatpipe blackbodies over their temperature range of operation. The results of the instrument validation and blackbody measurements are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号