共查询到20条相似文献,搜索用时 0 毫秒
1.
针对粒子滤波(PF)重采样后造成的粒子枯竭现象的问题,提出了一种基于改进重采样的粒子滤波无线传感器网络目标跟踪算法.该算法避免了残差重采样算法中的残留粒子重采样问题,减少了计算时间;通过产生新的粒子,增加了粒子的多样性,从而改善了粒子枯竭现象.仿真实验结果表明:改进重采样的粒子滤波算法提高了目标跟踪精度,降低了跟踪误差. 相似文献
2.
无线传感器网络目标跟踪算法的研究 总被引:3,自引:0,他引:3
研究传感器网络目标跟踪精度问题,跟踪目标的运动轨迹具有时变性,是一种非线性、非高斯问题,传统跟踪算法解决非线性问题时具有局限性,导致目标跟踪精度不高。为提高目标跟踪精度,将不受非线性、非高斯问题限制的粒子滤波算法引入到无线传感器网络目标跟踪应用中,并对基本粒子滤波算法的缺陷进行改进。仿真结果表明,改进粒子滤波算法提高了粒子利用效率,不仅提高了目标跟踪的精度,跟踪性能更好,并适合于目标跟踪的精度和实时性要求,为设计网络系统提供了参考。 相似文献
3.
4.
为了提高二进制无线传感器网络跟踪算法的精度和实时性,降低传感器节点能耗,将分布式粒子滤波运用到二进制无线传感器网络中进行目标跟踪。选择信号强度最大的节点作为簇头节点,在簇头单跳通信范围内的所有节点和簇头组成对目标跟踪的动态分簇,在簇头节点进行粒子采样和状态估计,在簇头之间传递粒子及其权值,从而得到了二进制无线传感器网络的分布式粒子滤波跟踪算法。研究了粒子数和网络节点数量对跟踪精度的影响。仿真结果表明,传感器的节点数量会影
响跟踪精度,但是粒子数对跟踪精度的影响更大。同时分布式粒子滤波比集中式粒子滤波具有更好的实时性和更低的能耗。 相似文献
5.
为提高水下无线传感器网络(UWSN)中的目标被动跟踪性能,提出了一种新的无序观测量(OOSM)处理算法.利用节点动态分簇建立分布式跟踪结构,簇头节点收集子节点的观测量形成本地估计.基于这种分布式结构,利用Unscented粒子滤波(UPF)结合新观测量,产生粒子滤波的建议密度分布,处理OOSM问题.详细推导了基于UPF的OOSM处理算法(OOSM-UPF)的具体实现步骤.利用转弯率建立机动目标跟踪模型,构建虚拟三维WSN仿真环境,比较了几种OOSM算法的性能.仿真结果表明,与其它算法相比,分布式OOSM-UPF算法的跟踪性能有了明显的提高. 相似文献
6.
为减少无线传感器网络(WSN)目标跟踪预测误差,提出一种粒子滤波实现WSN目标跟踪预测方法;该方法采用粒子滤波获得目标运动状态,联合当前时刻目标的本地估计位置、预测速度和加速度获得下一时刻目标预测位置,预测位置可作为当前头节点唤醒所述下一时刻传感器节点的依据;结果表明,上述粒子滤波预测方法预测准确度相比线性预测方法明显提高,均方根误差RMSE减少49%;相比基于二次多项式运动建模的WSN目标跟踪预测方法,均方根误差RMSE减少6%。 相似文献
7.
基于动态分簇结构的特点,结合权值选优粒子滤波(PF)算法的优越性,研究了无线传感器网络分布式目标跟踪算法.该方法采用这种改进的粒子滤波算法,利用簇和簇之间的传递关系,获得目标的动态状态.根据当前时刻目标的本地估计位置、预测速度和加速度,获得目标的预测位置.结果表明:此方法相比集中式目标跟踪,能在节省能量消耗的基础上,比... 相似文献
8.
一种基于预测的无线传感器网络目标跟踪技术 总被引:1,自引:0,他引:1
现有的各种日标跟踪技术未能综合考虑不同目标的运动特征,提出了一种新的基于预测的日标跟踪技术,以减少监控节点数目.根据目标运动的当前测量数据或者历史记录确定目标的运动特征,然后结合日标的当前位置、速度、运动方向等信息预测目标的未来位置;当目标位置预测失败时,网络根据目标的运动历史记录和先验知识逐级启动预测失败恢复过程.仿真结果显示在给定节点与基站分布、节点感知范围和目标运动特性等参数的前提下,比PES方法的目标丢失率大大降低,网络寿命有较大增加,表明采用在确保网络可靠跟踪目标的前提下,减少了被唤醒传感器节点的数目,从而降低了节点的能耗,延长了目标跟踪传感器网络的寿命. 相似文献
9.
基于粒子滤波的无线传感器网络目标跟踪算法 总被引:7,自引:0,他引:7
传感器节点的组织和路由对无线传感器网络(WSN)目标跟踪算法的性能有重大影响.为此,针对具有簇一树型网络拓扑结构的WSN,首先给出集中式粒子滤波跟踪算法(CPFTA)实现的具体步骤,然后提出一种分布式粒子滤波跟踪算法(DPFTA),构建性能评价体系,通过仿真实验给出两种跟踪算法的定量比较,结果表明DPFTA的跟踪精度稍低于CPFTA,但能大幅度减少通信开销,而且具有更小的跟踪反应时间;最后仿真分析了传感器覆盖密度和检测周值对跟踪算法性能的影响. 相似文献
10.
为了提高无线传感器网络目标跟踪的实时性,减少通信量,提出了一种二进制无线传感器网络的分布式自适应粒子滤波算法,该算法在簇头更换时,簇头之间只需要传送滤波值和误差方差,而无需传递大量粒子,同时该算法根据滤波方差在线调整粒子数,从而降低了算法的计算量。从算法耗时、均方根误差(跟踪精度)以及通信量等方面进行了仿真研究。仿真结果表明,分布式自适应粒子滤波算法的耗时、通信量要明显少于集中式粒子滤波和分布式粒子滤波;同时其均方根误差的变化幅度受粒子数的影响非常小,具有更好的跟踪性能。 相似文献
11.
针对目标运动是一个包含许多不确定因素的非线性非高斯随机过程,提出基于马尔可夫随机场模型与粒子滤波的WSN分布式目标跟踪方法(MRF-PF)。把目标跟踪过程看作是一个马尔可夫过程,基于贝叶斯规则,建立目标状态分布函数,用粒子滤波估计目标状态,实现目标跟踪。实验结果:对于泊松白噪声,MRF-PF方法的跟踪均方根误差RMSE相比卡尔曼滤波(KF)和扩展卡尔曼滤波(EKF)方法分别降低52.6%、49.2%;对于方差σ2由0.3→3的高斯噪声,GM-PF方法的RMSE相比KF、EKF分别降低54.5%~77.2%和23.5%~54.2%。这表明MRF-PF方法在非线性非高斯噪声或高斯噪声变化较大时具有较好的抗噪能力及跟踪性能。 相似文献
12.
13.
14.
15.
16.
17.
目标跟踪是无线传感器网络的一种重要应用。目标跟踪协议可分为使用预测和不使用预测两种。许多使用预测的协议假设被跟踪对象保持当前的速度和方向继续运动,但是,在目标沿着一定路径运动时,当处于路径拐点或是分叉点,遵循这种假设的算法很有可能失败。因此,提出一种路径概率感知的目标跟踪无线传感器网络协议。利用路径的拐点和分叉点的目标方向概率信息来预测目标运动新的方向,并且根据节点相对于路径以及邻居的位置来分配感应、通信和运算的能量。提出与路径走向概率相适应的调度方式。概率分析表明,本协议提供更好的目标跟踪效果并且节省能量。 相似文献
18.
19.
20.
基于水下传感器网络的目标跟踪技术研究现状与展望 总被引:2,自引:0,他引:2
水下目标跟踪在海洋资源的开发利用以及国家安全的防御等方面都具有广泛的应用价值和重要的战略意义. 基于水下传感器网络(Underwater sensor networks, USNs)的目标跟踪技术凭借其覆盖范围广、观测时间长和实时融合等优势已经成为一个新的研究热点. 本文针对基于USNs的目标跟踪关键技术的基本思想、研究进展、应用及局限性进行了综述, 主要从以下几个角度对其展开论述: USNs的建设现状、系统组成及其分类、目标跟踪系统模型、单目标跟踪技术、多目标跟踪技术以及能效优化措施. 最后, 本文不仅指出了基于USNs的目标跟踪研究目前存在的主要挑战, 并对该领域的未来发展方向进行了展望. 相似文献