首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Porous silicon (PS)-core/SnO2-shell nanowires (NWs) were synthesized by a two step process: electrochemical anodization of silicon followed by atomic layer deposition of SnO2. The photoluminescence spectrum of the PS nanowires showed a broad blue green emission band centered at approximately 510 nm. PL measurement also showed that the blue green emission was enhanced by SnO2 coating and enhanced further by thermal annealing. It appeared that annealing in a reducing atmosphere was more efficient in increasing the blue green emission intensity than annealing in an oxidizing atmosphere. Energy-dispersive X-ray spectroscopy revealed that the enhancement in the blue green emission by annealing in a reducing atmosphere was attributed to the formation of Sn interstitials in the PS cores due to the dissociation of the SnO2 shells followed by the diffusion of the Sn atoms, generated as a result of the dissociation of SnO2, into the PS cores during the annealing process.  相似文献   

2.
SrAl2O4: Eu2+, Dy3+ nanometer phosphors were synthesized by detonation method. The particle morphology and optical properties of detonation soot that was heated at different temperatures (600–1100 °C) had been studied systematically by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Results indicated SrAl2O4: Eu2+, Dy3+ nanometer powders in monoclinic system (a = 8.442, b = 8.822, c = 5.160, β = 93.415) can be synthesized by detonation method, when detonation soot was heated at 600–800 °C. The particle size of SrAl2O4: Eu2+, Dy3+ is 35 ± 15 nm. Compared with the solid-state reaction and sol-gel method, synthesis temperature of the detonation method is lower about 500 and 200 °C respectively. After being excited under UN lights, detonation soot and that heated at 600–1100 °C can emit a green light.  相似文献   

3.
A procedure was developed to coat functionalized polystyrene spheres with well-defined layer of amorphous titanium dioxide. The core–shell particles can be turned into TiO2 nanosponge by calcining the dried particles in a furnace. The phase transformation temperature of TiO2 hybrid microspheres from anatase to rutile was increased by about 200 °C due to the blocking function of the calcined polymer remainder.  相似文献   

4.
ZnO/amorphous-BaTiO3 thin-films were prepared on glass substrates by a sol–gel process. DSC/TGA, XRD and AFM were used to analyze the thermolysis of the precursor and the crystal growth characteristics of ZnO, and IR spectroscopy was used to determine the presence of OH groups and CO impurities containing in the films. Violet emission centering at 418 and 438 nm was observed in room temperature PL spectra of the films annealed at 400–500 °C. The strongest violet emission was observed in the film annealed at 400 °C. The emission intensity reduces as the annealing temperature increases, and vanishes in the film annealed at 550 °C. All of the films contain OH and CO groups, and the films annealed at the temperature over 450 °C contain CO2 impurities, indicating the enhancing oxidation of the films. The vanishing of the violet emission is probably due to the improvement of the oxygen deficient of ZnO crystals.  相似文献   

5.
In this work the field emission studies of a new type of field emitter, zinc oxide (ZnO) core/graphitic (g-C) shell nanowires are presented. The nanowires are synthesized by chemical vapor deposition of zinc acetate at 1300 °C Scanning and transmission electron microscopy characterization confirm high aspect ratio and novel core–shell morphology of the nanowires. Raman spectrum of the nanowires mat represents the characteristic Raman modes from g-C shell as well as from the ZnO core. A low turn on field of 2.75 V/μm and a high current density of 1.0 mA/cm2 at 4.5 V/μm for ZnO/g-C nanowires ensure the superior field emission behavior compared to the bare ZnO nanowires.  相似文献   

6.
We have investigated an optimal annealing process in order to enhance 1.55 μm light emission from semiconducting β-FeSi2 and found that two steps annealing at 600 °C and 800 °C is effective to its enhancement. Rutherford backscattering spectroscopy and SEM observations revealed that pronounced surface segregation of Fe atoms during annealing at 600 °C caused surface precipitate of β-FeSi2. The enhancement of light emission is attributed spatial isolation of the surface β-FeSi2 (light emitting layer) from damaged and defective layers with nonradiative recombination centers.  相似文献   

7.
Silicon/silicon carbide (Si/SiC) core–shell nanowires grown on quartz substrates by hot-wire chemical vapor deposition were studied. Nickel was used as a catalyst to induce the growth of these core–shell nanowires followed by the vapor–solid–solid growth mechanism. The nanowires were grown by varying substrate-to-filament distance; ds-f from 1.9 to 3.1 cm with an interval of 0.4 cm. Lower ds-f produced a high density of straight core–shell nanowires. A highly crystalline single crystal Si core of the nanowires was produced at lower ds-f as well. Presence of Si and SiC nano-crystallites embedded within an amorphous matrix in the shell of the nanowires exhibited a high intensity of photoluminescence emission spectra from 600 to 1000 nm. The effects of the ds-f on the structural and optical properties of the nanowires are discussed.  相似文献   

8.
ZnO nanowires were grown onto SnO2 film coated on Si substrate using a vapor transport method. Zn vapor was found to play important roles in reducing SnO2 and in being oxidized as a ZnO layer. The growth mechanism of ZnO nanowires was revealed to be a two-step process of Zn-SnO2 redox reaction and Sn catalyzed V-L-S (vapor-liquid-solid) growth; initially, Zn vapor atoms arriving at the SnO2 surface reduce the SnO2 to Sn and O atoms and diffuse into the SnO2 layer to form a ZnO layer. The reduced Sn atoms diffuse out of the SnO2 layer and are agglomerated to form Sn liquid droplets. Then, the Sn droplets on the surface of ZnO layer serve as a catalyst for the catalytic V-L-S growth of ZnO nanowires.  相似文献   

9.
Mass production of transparent semiconducting ternary oxide Zn2SnO4 nanowires is successfully synthesized by the thermal evaporation method without any catalyst. The as-synthesized products are characterized with field-emission scanning electron microscope (FE-SEM), X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS), high-resolution transmission electron microscope (HR-TEM) and selected area electron diffraction (SEAD). A formation of Zn2SnO4 nanowires based on a self-catalytic VLS growth mechanism is discussed. The photoluminescence spectrum (PL) of the nanowires shows a broad blue-green emission around the 300-600 nm wavelengths with a maximum center at 580 nm under room temperature.  相似文献   

10.
X.J. Zheng  L. He  M.H. Tang  Y. Ma  J.B. Wang  Q.M. Wang 《Materials Letters》2008,62(17-18):2876-2879
The effects of moderate annealing temperature (600–800 °C) on the microstructure, fatigue endurance, retention characteristic, and remnant polarization (2Pr) of Bi3.25Eu0.75Ti3O12 (BET) thin films prepared by metal-organic decomposition (MOD) were studied in detail. 2Pr (66 µC/cm2 under 300 kV/cm), fatigue endurance (3% loss of 2Pr after 1.2 × 1010 switching cycles), and retention characteristic (no significant polarization loss after 1.8 × 105s) for BET thin film annealed at 700 °C are better than those for thin films annealed at other temperature. The mechanisms concerning the dependence of microstructure and ferroelectric properties on the annealing temperature were discussed.  相似文献   

11.
Uniform Al2O3 films were deposited on silicon substrates by the sol–gel process from stable coating solutions. The technological procedure includes spin coating deposition and investigating the influence of the annealing temperature on the dielectric properties. The layers were studied by Fourier transform infrared spectroscopy and Scanning Electron Spectroscopy. The electrical measurements have been carried out on metal–insulator–semiconductor (MIS) structures. The C–V curves show a negative fixed charge at the interface and density of the interface state, Dit, 3.7 × 1011 eV− 1cm− 2 for annealing temperature at 750 °C.  相似文献   

12.
The martensite to austenite reversion behavior of 90% cold rolled AISI 301 stainless steel was investigated in order to refine the grain size. Cold rolled specimens were annealed at 600–900 °C, and subsequently characterized by scanning electron microscopy, X-ray diffraction, Feritscope, and hardness measurements. The effects of annealing parameters on the formation of fully-austenitic nano/submicron grained structure and the mechanisms involved were studied. It was found that annealing at 800 °C for 10 s exhibited the smallest average austenite grain size of 240 ± 60 nm with an almost fully-austenitic structure.  相似文献   

13.
LaFeO3 precursors are prepared using solid-state reaction in the presence of PEG400, and then LaFeO3 nano-powders are obtained through heating these precursors under different conditions. Eventually, LaFeO3 thick film sensors are fabricated by using LaFeO3 nano-materials as sensing materials. The phase composition and morphology of particles in these materials are characterized through X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The XRD analysis results reveal that LaFeO3 can be obtained by heating at 400–900 °C. TEM images manifest that the average particle sizes increase with heating temperature increasing, the particle sizes are in the range of 50–80 nm when heating temperature is increased to 800 °C. Furthermore, the influence of the heating duration and the heating temperature on the gas-sensing properties of the sensors based on LaFeO3 nano-materials is also investigated in this work. The sensitivities to several organic gases, such as (CH3)3N and (CH3)2CO are studied. It is found that the sensor based on LaFeO3 nano-material (800 °C, 2 h) exhibits best performance in all sensors investigated in this work. In detail, the sensitivities of the sensor based on LaFeO3 nano-material (800 °C, 2 h) to 1000 and 0.001 ppm (CH3)3N at 208 °C are as high as 2553 and 1.6, respectively; and the response time and recovery time for 10 ppm trimethylamine are 8 and 50 s, respectively.  相似文献   

14.
SiC/ZnO nanocomposites were prepared by radio frequency alternate sputtering followed by annealing in N2 ambient. Well-crystallized ZnO matrix was obtained after annealed at 750 °C according to X-ray diffractometer patterns. Transmission electron microscopy analyses indicated that the SiC thin layer aggregated to form SiC nanoclusters with the average size of 7.2 nm when the annealing temperature was 600 °C. When the annealing temperatures increased above 900 °C, some of the SiC nanoclusters changed into SiC nanocrystals and surfacial atoms of the SiC nanoparticles were surrounded by a layer of SiO x (x ≤ 2) according to the Fourier transform infrared spectrums. The SiC/ZnO nanocomposites annealed at 750 °C exhibit strong photoluminescence bands ranging from 250 to 600 nm. UV light originates from the near band edge emission of ZnO and the blue emission peaked at around 465 nm (2.7 eV) may be due to the formation of emission centers caused by the defects in Si–O network, while the green-emission peak at around 550 nm (2.3 eV) may be attributed to the deep level recombination luminescence caused by the vacancies of oxygen and zinc.  相似文献   

15.
LiOH·H2O, Co(NO3)2·6H2O and NH4VO3 were used to prepare nano-crystalline LiCoVO4 by 150 °C solvothermal reaction in isopropanol for 10–360 h and subsequent calcination at 300–500 °C for 6 h. XRD, TEM and selected area electron diffraction (SAED) revealed the presence of nano-crystalline LiCoVO4 with inverse spinel structure. The V–O stretching vibration modes of VO4 tetrahedrons were detected by FTIR over the range 617–835 cm− 1 and by Raman spectrometer at 805.7 and 783.1 cm− 1. Co, V and O were detected by EDX. TGA of solvothermal products shows weight loss due to the evaporation and decomposition processes at 40–648 °C.  相似文献   

16.
In this investigation, Fe3Mo3C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 μm at the end of milling. Fe3Mo3C was synthesized during annealing of 70 h milled sample at 700 °C. Undesired phases of MoOC and Fe2C form at 1100 °C. No transformation takes place during annealing of 10 h milled sample at 700 °C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 °C.  相似文献   

17.
A chemical route has been used to synthesize composite oxides of zinc and tin. An ammonia solution was added to equal amounts of zinc and tin chloride solutions of same molarities to obtain precipitates. Three portions of these precipitates were annealed at 400, 600 and 800 °C, respectively. Results of X-ray diffraction and transmission electron microscopy clearly depicted coexistence of phases of nano-sized SnO2, ZnO, Zn2SnO4 and ZnSnO3. The effect of annealing on structure, morphology and sensing has been observed as well. It has been observed that annealing promoted growth of Zn2SnO4 and ZnSnO3 at the expense of zinc. The sensing response of fabricated sensors from these materials to 250 ppm LPG and ethanol has been investigated. The sensor fabricated from powder annealed at 400 °C responded better to LPG than ethanol.  相似文献   

18.
The effects of ZnO addition on the microstructures and microwave dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics were investigated. ZnO was selected as liquid phase sintering aids to lower the sintering temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. With ZnO additives, the densification temperature of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 can be effectively reduced from 1450 to 1200–1325 °C. The crystalline phase exhibited no phase difference at low addition levels (0.25–2 wt.%). It is found that low-level doping of ZnO (0.25–2 wt.%) can significantly improve the density and dielectric properties of 0.8(Mg0.95Co0.05)TiO3–0.2Ca0.6La0.8/3TiO3 ceramics. The quality factors Q × f were strongly dependent upon the amount of additives. Q × f values of 36 000 and 13 000 GHz could be obtained at 1200–1325 °C with 1 and 2 wt.% ZnO additives, respectively. During all additives ranges, the relative dielectric constants were significantly different and ranged from 23.1 to 27.96. The temperature coefficient varies from 14.1–24.3 ppm/°C.  相似文献   

19.
Influence of the thermal annealing atmosphere on the photoluminescence properties of ZnS-core/SnO2-shell coaxial nanowires was investigated. ZnS nanowires were synthesized by a two-step process: the thermal evaporation of ZnS powders and the atomic layer deposition of SnO2. Transmission electron microscopy and X-ray diffraction analyses reveal that two crystalline ZnS phases: one with a zinc blende structure and the other with an wurtzite structure coexist in the cores whereas the SnO2 cores in the as-prepared coaxial nanowires are amorphous. The SnO2 shells are found to be crystallized by thermal annealing. Photoluminescence (PL) measurements at room temperature show that the green emission of the ZnS/SnO2 coaxial nanowires is enhanced in intensity by thermal annealing regardless of the annealing atmosphere. The PL emission is more significantly enhanced in intensity by annealing in a reducing atmosphere than in an oxidative atmosphere since AuZn is more easily generated in the ZnS cores in the former atmosphere.  相似文献   

20.
SnO2 nanowires can be synthesized on alumina substrates and formed into an ultraviolet (UV) photodetector. The photoelectric current of the SnO2 nanowires exhibited a rapid photo-response as a UV lamp was switched on and off. The ratio of UV-exposed current to dark current has been investigated. The SnO2 nanowires were synthesized by a vapor-liquid-solid process at a temperature of 900 °C. It was found that the nanowires were around 70-100 nm in diameter and several hundred microns in length. High-resolution transmission electron microscopy (HRTEM) image indicated that the nanowires grew along the [200] axis as a single crystallinity. Cathodoluminescence (CL), thin-film X-ray diffractometry, and X-ray photoelectron spectroscopy (XPS) were used to characterize the as-synthesized nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号