首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two naphthalene-aromatic polyamides were prepared from 2,6-naphthalenedicarboxylic acid and various aromatic diamines by a modified Higashi phosphorylation reaction. The first polymer, poly(4,4′-diaminobenzanilide-2,6-naphthalamide)** (DBNA), was synthesized by the reaction of 2,6-naphthalenedicarboxylic acid with 4,4′-diaminobenzanilide. The second polymer, 50/50 copoly(1,4-phenylene/1,4-bis(4′-phenoxy)benzene-2,6-naphthalamide)*** (PBNA), is a copolymer synthesized using an equimolar ratio of 1,4-phenylene diamine and 1,4-bis(4′-aminophenoxy)benzene. These two polymers have inherent viscosities of 4.17 and 2.32 dL g-1, respectively, and dissolve in N-methyl-2-pyrrolidone (NMP)containing LiCl. Highstrength films were obtained by casting from these polymer solutions. Blends of DBNA/amorphous nylon and of PBNA/amorphous nylon were prepared by rapidly precipitating the ternary NMP solution into deionized water, and hot-pressing to films at 185°C. The compatibility, morphology, and mechanical properties were investigated by dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), and tensile tests. The results revealed that both DBNA and PBNA were partially compatible with amorphous nylon. DBNA formed microfibrils in the amorphous nylon matrix, and its mechanical properties, tensile strength and modulus, improved with increasing DBNA content. PBNA had no reinforcing effect, perhaps because it did not form microfibrils in the amorphous nylon matrix.  相似文献   

2.
Summary A series of aryl-aliphatic polyamides, copoly(4,4-diaminobenzanilide-adipamide/2,6-naphthalamide)s, with feed mole ratios of adipic acid/2,6-naphthalene dicarboxylic acid of 1/9, 3/7, and 5/5 were synthesized. A new family of molecular composites based on the synthesized aryl-aliphatic polyamides and nylon 6 has been discovered. The molecular composites were found to have at least partial miscibility between aryl-aliphatic polyamides and nylon 6. Well-defined aryl-aliphatic polyamide microfibrils a few nanometers in diameter were observed in the molecular composites. 10 wt% aryl-aliphatic polyamide clearly promoted the toughness of nylon 6.  相似文献   

3.
Poly(2,6-dimethyl-p-phenylene) oxides (PPO) grafted with nylon 6 were prepared by first quantitatively brominating the PPO, followed by reacting the brominated products with nylon 6 of different molecular weights. The molecular weights of PPOs were kept intact during bromination. These graft copolymers with well-defined structures were used as compatibilizers for nylon 6/PPO blends. Some compatibilization phenomena were observed, as indicated by the mechanical properties of the blends. The best compatibilization was achieved when the graft copolymer is most block-copolymer-like. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The miscibility of the binary and ternary blends of poly(2,6‐dimethyl‐1,4‐phenylene oxide), brominated polystyrene, and polystyrene was investigated using a differential scanning calorimeter. The morphology of these blends was characterized by scanning electron microscopy. These studies revealed a close relation between the blend structure and its mechanical properties. The compatibilizing effect of poly(2,6‐dimethyl‐1,4‐phenylene oxide) on the miscibility of the polystyrene/brominated polystyrene blends was examined. It was found that poly(2,6‐dimethyl‐1,4‐phenylene oxide), which was miscible with polystyrene and partially miscible with brominated polystyrene, compatibilizes these two immiscible polymers if its contention exceeds 33 wt %. Upon the addition of poly(2,6‐dimethyl‐1,4‐phenylene oxide) to the immiscible blends of polystyrene/brominated polystyrene, we observed a change in the morphology of the mixtures. An improvement in the mechanical properties was noticed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 225–231, 2000  相似文献   

5.
陆波  王尊新  李鹏 《塑料工业》2012,40(4):53-55,122
将针状硅灰石和尼龙6经双螺杆挤出机熔融共混,制备了硅灰石/尼龙6复合材料。研究了硅烷偶联剂种类、偶联剂质量分数、共混工艺条件和硅灰石质量分数对复合材料性能的影响。用光学显微镜和扫描电子显微镜分别观察了硅灰石共混前后的形貌和硅灰石/尼龙6复合材料冲击试样断面的形貌。结果表明:用KH-550预处理的硅灰石比KH-560预处理的硅灰石制备的硅灰石/尼龙6复合材料的力学性能好。硅灰石采用侧喂料和较低的螺杆转速制备硅灰石/尼龙6复合材料,可以提高硅灰石/尼龙6复合材料的力学性能。随着硅灰石质量分数的增加,复合材料的力学性能提高。  相似文献   

6.
采用原位共混和熔融共混分别制备了尼龙(PA)6/PA6-66-1010共混物。利用傅里叶变换红外光谱仪、差示扫描量热仪、动态热机械分析、力学性能测试和扫描电子显微镜对共混物的内部氢键作用、结晶熔融行为、玻璃化转变温度、力学性能及拉伸断裂形貌进行了表征。结果表明,原位共混物的分子链段的运动性和柔性好于熔融共混物,结晶温度、熔融温度、结晶度均低于熔融共混物,强度和韧性均优于熔融共混物。  相似文献   

7.
A series of glass fiber‐reinforced rubber‐toughened nylon 6 composites was prepared. The mechanical properties and morphology of the composites toughened with ABS were investigated and compared with composites toughened with EPR‐g‐MA. A study of the mechanical properties showed that the balance of the impact strength and stiffness for both types of systems can be significantly improved by proper incorporation of glass fibers into toughened nylon 6. The differences between these two types of rubber‐toughened composites are significant at a high rubber content. However, the ductility of both composites toughened with rubber was significantly lower than that of blends without glass fiber. The relationships between rubber content, nylon 6 molecular weight, compatibilizer, processing, and mechanical properties are discussed. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 484–497, 2001  相似文献   

8.
《国际聚合物材料杂志》2012,61(3-4):641-654
Abstract

Rheological properties (melt flow index and melt stability), mechanical properties (tensile strength, flexural strength and impact) of polyamide (PA6) polypropylene (PP) blends were investigated. Influence of potential compatibilizors: 4,4′-diphenyhnethane carbodiimide (OCDI), 4,4′-diphenylmethane bismaleimide (BMI) and 2,2′-(1,4-pheaylene)-bisoxazoline (OX) on mechanical properties and thermostability of initial and glass reinforced polymer blends was also investigated too. We tried to study the structure of glass fiber reinforced composites by mercury intrusion porosimitry. The influence of compatibilizors on molecular weight of PA6 was studied by GPC, on chemical structure of blends was investigated by NMR and IR-spectroscopy. Addition of OCDI and OX (chain extenders) preserves the product formation as the react with the active and carbonyl groups of PA6. BMI has lower reactivity. Grafting of BMI to PP chains improves compatibility in PA6/PP blend and increases PP adhesion to glass fiber.  相似文献   

9.
Phenolphthalein poly(ether ether ketone) (PEK‐C) was found to be miscible with uncured tetraglycidyl 4,4′‐diaminodiphenylmethane (TGDDM), which is a type of tetrafunctional epoxy resin (ER), as shown by the existence of a single glass transition temperature (Tg) within the whole composition range. The miscibility between PEK‐C and TGDDM is considered to be due mainly to entropy contribution. Furthermore, blends of PEK‐C and TGDDM cured with 4,4′‐diaminodiphenylmethane (DDM) were studied using dynamic mechanical analysis (DMA), Fourier‐transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). DMA studies show that the DDM‐cured TGDDM/PEK‐C blends have only one Tg. SEM observation also confirmed that the blends were homogeneous. FTIR studies showed that the curing reaction is incomplete due to the high viscosity of PEK‐C. As the PEK‐C content increased, the tensile properties of the blends decreased slightly and the fracture toughness factor also showed a slight decreasing tendency, presumably due to the reduced crosslink density of the epoxy network. SEM observation of the fracture surfaces of fracture toughness test specimens showed the brittle nature of the fracture for the pure ER and its blends with PEK‐C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 598–607, 2001  相似文献   

10.
Tensile, flexural and impact properties were measured of a heterogeneous polymer blend system, consisting of nylon 6 and a chemically modified ABS (MABS). It was found from the tensile tests that nylon-richer blends show yielding behaviour and nylon-leaner blends show necking behaviour. The addition of MABS increases the modulus, whereas the tensile strength and percentage elongation at break decrease and go through a minimum. The impact strength is increased to a maximum of approximately three times when 20 wt% of MABS is added to nylon 6. In order to interpolate the mechanical properties observed, empirical equations are given which are found to describe the experimental data rather well. Photomicrographs were taken of the tensile fractured surfaces using a scanning electron microscope.  相似文献   

11.
The effects of electron‐beam irradiation on morphology, mechanical properties and on the heat and hot oil resistance of the thermoplastic elastomeric blend of 30:70 and 70:30, nylon 6 and hydrogenated nitrile rubber (HNBR) were investigated over the dose range 0–8 Mrad. The insoluble content of blends increased with increase in the radiation dose. The morphology of the blend was studied in scanning electron microscopy, with special reference to the effect of radiation prior to processing via injection molding. Irradiated pellets showed better mechanical properties after injection molding compared with irradiated sheets at low radiation dose. The observed differences in mechanical properties are explained on the basis of morphology of the blend. The blend properties were also found to have a strong dependence on nylon content. It was found that the blends rich in nylon had superior mechanical properties, hot oil and solvent resistance, whereas blends with higher HNBR content had better set and heat resistance. The effect of radiation on interaction in these blends was also evaluated and was found to induce possible inter‐chain crosslinking in the blends. Copyright © 2006 Society of Chemical Industry  相似文献   

12.
To overcome the brittleness of polybenzoxazine and decrease its high curing temperature, sulfonated polysulfone/polysulfone/benzoxazine ternary blends were prepared, and their curing behaviors, phase structures and properties were probed. Sulfonated polysulfone (SPSU) was synthesized firstly, and then SPSU was applied to modify 4,4′‐diaminodiphenyl methane based benzoxazine (BZ‐m) along with polysulfone. The results obtained from differential scanning calorimetry showed that the addition of SPSU efficiently decreased the curing temperature of BZ‐m, and furthermore affected the phase structures of SPSU/PSU/PBZ‐m blends. The phase structures of the corresponding blends were confirmed by scanning electron microscopy and dynamic mechanical analysis to probe the relationship between the microstructures and mechanical properties. According to the results, the blends presented complicated phase structures and exhibited good comprehensive mechanical properties. Moreover, all the blends displayed good thermal stability and the blends with SPSU‐PBZ‐m core ? shell particles and a phase inversion structure exhibited the highest comprehensive mechanical properties. We believe these blends can meet the requirement of applications relating to high strength and good toughness matrix for fiber reinforced composites. © 2014 Society of Chemical Industry  相似文献   

13.
An epoxy based on the tetraglycidyl 4,4′‐diaminodiphenyl‐ methane (TGDDM)/bisphenol A type novolac(F‐51) cured with 4,4′‐diaminidiphenysulfone (DDS) has been modified with Poly (phthalazinone ether nitrile ketone)(PPENK). The interaction between the PPENK and epoxy resin have been investigated by differential scanning calorimetry (DSC), FT‐IR, and dynamic mechanical analysis (DMA). The thermal and mechanical properties were characterized by thermogravimetric analysis (TGA), thermomechanical analysis (TMA), flexural, impact strength, and the critical stress intensity factor tests. The results showed that a large number of physical crosslinks formed by intermolecular and intramolecular hydrogen bonding indeed existed in the TGDDM/F‐51/PPENK blends. These interactions gave good compatibility between PPENK and epoxy resin. So that any phase separation had not been detected by DMA and scanning electron microscope (SEM). Beyond that the interaction could also be a benefit to the thermal and mechanical properties. Compared with the neat epoxy resin, the critical stress intensity factor values reached the maximum at 10‐phr PPENK, as well as the impact strength. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42938.  相似文献   

14.
New novel fire‐resistant and heat‐resistant cyclotriphosphazene‐containing polyimide resins were prepared in situ by the polymerization of (p‐aminophenoxy)(phenoxy)cyclotriphosphazenes with 3,3′,4,4′‐benzophenonetetracarboxylic acid or 3,3′,4,4′‐diphenylsulfonetetracarboxylic acid and a crosslink agent, 5‐norbornene‐2,3‐dicarboxylic acid and were used as polymer matrix compositing with a woven carbon fiber to prepare nadic‐end‐capped cyclotriphosphazene‐containing polyimide/carbon fiber composites. The thermal stability, flame retardance, morphology of the surface fracture, and some physical properties of the composites were investigated by thermogravimetric analysis, scanning electron microscopy, and a material testing system, respectively. The composites had good thermal stability, flame retardance, and mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 810–818, 2003  相似文献   

15.
Various contents of copolyester of p-hydroxy benzoic acid and 2-hydroxy-6-naphthoic acid (HBA/HNA) were compounded with high-density polyethylene (HDPE). The reinforcing effect on the properties of the resulting wood/HDPE composites was determined. The results showed that incorporating HBA/HNA copolyester led to an increase by 340 and 30% in the impact strength of blends and composites, respectively. Improved toughness was also evidenced by the rough impact fractured surface observed by scanning electron microscope. HBA/HNA copolyester had a positive effect on both tensile and flexural properties in blends and composites. The presence of HBA/HNA copolyester enhanced the crystallization and melting temperature, though it did not change the crystal structure of the blends or composites. The dynamic mechanical property conformed with static property. These findings demonstrated that the incorporation of low amounts of HBA/HNA copolyester can substantially reinforce the wood flour/HDPE composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47338.  相似文献   

16.
Tert‐butyl hydroquinone–based poly(cyanoarylene ether) (PENT) was synthesized by the nucleophilic aromatic substitution reaction of 2,6‐dichlorobenzonitrile with tert‐butyl hydroquinone using N‐methyl‐2‐pyrrolidone (NMP) as solvent in the presence of anhydrous potassium carbonate in a nitrogen atmosphere at 200°C. PENT‐toughened diglycidyl ether of bisphenol A epoxy resin (DGEBA) was developed using 4,4′‐diaminodiphenyl sulfone (DDS) as the curing agent. Scanning electron micrographs revealed that all blends had a two‐phase morphology. The morphology changed from dispersed PENT to a cocontinuous structure with an increase in PENT content in the blends from 5 to 15 phr. The viscoelastic properties of the blends were investigated using dynamic mechanical thermal analysis. The storage modulus of the blends was less than that of the unmodified resin, whereas the loss modulus of the blends was higher than that of the neat epoxy. The tensile strength of the blends improved slightly, whereas flexural strength remained the same as that of the unmodified resin. Fracture toughness was found to increase with an increase in PENT content in the blends. Toughening mechanisms like local plastic deformation of the matrix, crack path deflection, crack pinning, ductile tearing of thermoplastic, and particle bridging were evident from the scanning electron micrographs of failed specimens from the fracture toughness measurements. The thermal stability of the blends were comparable to that of the neat resin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3536–3544, 2006  相似文献   

17.
Carbon fiber reinforced polymer composites are an extremely strong and light fiber-reinforced plastics that contains carbon fiber. In the present study, carbon fabrics were treated with various weight percentages of silane and were confirmed by spectral analysis (Fourier transform infrared). The treated carbon fibers were reinforced in hybrid resin (a combination of vinyl ester and epoxy at a ratio of 80:20) by using vacuum-assisted resin transfer mold technique. The composites were tested to know their tensile strength, modulus, flexural strength, modulus, and interlaminar shear strength. The hybrid matrix specimen was also prepared and tested for the mechanical properties and confirmed the miscibility by differential scanning calorimetry and X-ray diffraction. The mechanical properties of hybrid matrix composites (HMCs) were studied by fracture surface morphology with scanning electron microscope. The mechanical properties of the HMCs increased with silane treatment. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47695.  相似文献   

18.
Polymeric nano‐composites are prepared by melt intercalation in this study. Nano‐clay is mixed with either a polymer or a polymer blend by twin‐screw extrusion. The clay‐spacing in the composites is measured by X‐ray diffraction (XRD). The morphology of the composites and its development during the extrusion process are observed by scanning electron microscopy (SEM). Melt viscosity and mechanical properties of the composites and the blends are also measured. It is found that the clay spacing in the composites is influenced greatly by the type of polymer used. The addition of the nano‐clay can greatly increase the viscosity of the polymer when there is a strong interaction between the polymer and the nano‐clay. It can also change the morphology and morphology development of nylon 6/PP blends. The mechanical test shows that the presence of 5–10 wt.% nano‐clay largely increases the elastic modulus of the composites and blends, while significantly decreases the impact strength. The water absorption of nylon 6 is decreased with the presence of nano‐clay. The effect of nano‐clay on polymers and polymer blends is also compared with Kaolin clay under the same experimental conditions.  相似文献   

19.
This article investigates the miscibility of nylon 66 and santoprene blends. The nylon 66–santoprene was blended to give the following compositions: 100/0, 90/10, 75/25, 50/50, 25/75, and 0/100. No compatibilizer was used during blending of the two components. Thermal properties and morphology of the blends were checked by using differential scanning calorimetry and scanning electron microscopy (SEM). The effect of blend composition on the mechanical properties was checked through tensile and izod impact tests. Both components were immiscible, as confirmed by double melting temperature, corresponding to that of polypropylene component in santoprene and nylon 66. Also, the melting temperature of nylon was not significantly affected by blending it with santoprene. However, the crystallization temperature of nylon increased after blending. This was attributted to the ethylene–propylene–diene monomer content in santoprene, which acts as a nucleating agent. The effect of blend composition on mechanical properties occurred at the 50/50 composition and above. Evidence of immiscibility of both components was also confirmed by the presence of a two-phase structure, as revealed by SEM. © 1998 John Wiley & Sons, Inc. J Appl Polm Sci 68: 1285–1295, 1998  相似文献   

20.
The morphology and mechanical properties of polyamide-based blends prepared in single and corotating twin-screw extruders were compared using transmission electron microscopy (TEM) techniques. Reactive polyamide blends with SEBS-g-MA (a maleated styrenic triblock copolymer with ethylene–butvlene midblocks), EPR-g-MA (a maleated ethylene/propylene rubber), and ABS were selected for the purpose of this investigation. For blends of SEBS-g-MA with difunctional (nylon x,y) polyamides (e.g., nylon 6,6; nylon 12,12), the twin-screw extruder was more effective in producing a finer dispersion of the rubber phase, which resulted in a significant lowering of the ductile–brittle transition temperature in case of the nylon 6,6 blend. On the other hand, blends of SEBS-g-MA with the mono-functional nylon 6 material led to rubber particles that were too small for toughening for both extruder types employed in this work. For nylon 6/EPR-g-MA blends, the single-screw extruder led to blends with excellent low-temperature impact properties for both single-step and masterbatch mixing techniques, whereas nylon 6/EPR-g-MA blends prepared in a single-step operation in the twin-screw extruder were brittle under ambient conditions. For difunctional polyamide blends with ABS (compatibilized with an imidized acrylic polymer), the morphology and mechanical properties were found to be independent of the extruder type employed for processing. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号